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FOREWORD 

The purpose of the Signal Timing Manual is to provide direction and guidance to 
managers, supervisors, and practitioners based on sound practice to proactively and 
comprehensively improve signal timing.  The outcome of properly training staff and 
proactively operating and maintaining traffic signals is signal timing that reduces 
congestion and fuel consumption ultimately improving our quality of life and the air we 
breathe.   

This manual provides an easy-to-use concise, practical and modular guide on signal 
timing.  The elements of signal timing from policy and funding considerations to timing 
plan development, assessment, and maintenance are covered in the manual.  The manual 
is the culmination of research into practices across North America and serves as a 
reference for a range of practitioners, from those involved in the day to day management, 
operation and maintenance of traffic signals to those that plan, design, operate and 
maintain these systems. 

 

      Regina McElroy 
      Director 
      Office of Transportation Management 
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GLOSSARY 

The following section is a collection of terms used in the manual.  Sources and references 
are identified for those terms with multiple definitions.   

Accident modification factors  
A means of quantifying crash reductions associated with safety improvements.  

Actuated Signal Control 
Phase time based on detection data.   

Adaptive Signal Control 
A signal control concept where vehicular traffic in a network is detected at a point upstream 
and/or downstream and an algorithm is used to predict when and where traffic will be and 
to make signal adjustments at downstream intersections based on those predictions.  

Added Initial 
An interval that times concurrently with the minimum green interval and increases by each 
vehicle actuation received during the initial period.  This time cannot exceed the maximum 
initial. 

Analysis period 
A single time period during which capacity analysis is performed on a transportation facility.  
If the demand exceeds capacity during an analysis period, consecutive analysis periods 
can be selected to account for initial queue from the previous analysis period. Also referred 
to as time interval. 

Analytical Model 
A model that relates system components using theoretical considerations tempered, 
validated, and calibrated by field data. 

Annual average daily traffic  
The total volume of traffic passing a point or segment of a highway facility in both directions 
for one year divided by the number of days in the year. 

Approach  
A set of lanes at an intersection that accommodates all left-turn, through, and right-turn 
movements from a given direction. 

Approach grade 
The grade of an intersection approach, expressed as a percentage, with positive values for 
upgrade and negative for downgrade. 

Area type 
A geographic parameter reflecting the variation of saturation flows in different areas. 

Arrival rate 
The mean of a statistical distribution of vehicles arriving at a point or uniform segment of a 
lane or roadway. 

Arrival type  
Six assigned categories for determining the quality of progression at a signalized 
intersection. 

Arterial  
A signalized street that primarily serves through traffic and that secondarily provides access 
to abutting properties, with signal spacings of 2.0 miles or less. 
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Arterial LOS  
An arterial- and network-level performance measure associated with the class of arterial 
and the travel speed of arterial under study. 

Automatic Vehicle Location (AVL) System 
An intelligent transportation system (ITS) technology to track vehicle location, speed and 
other measures within a system.  Most applications are found on transit vehicles and 
systems. 

Average Speed 
The average distance a vehicle travels within a measured amount of time. 

Average travel speed 
The length of the highway segment divided by the average travel time of all vehicles 
traversing the segment, including all stopped delay times. 

Back of queue 
The distance between the stop line of a signalized intersection and the farthest reach of an 
upstream queue, expressed as a number of vehicles. The vehicles previously stopped at 
the front of the queue are counted even if they begin moving. 

Bandwidth 
The maximum amount of green time for a designated direction as it passes through a 
corridor at an assumed constant speed, typically measured in seconds. 

Bandwidth attainability 
A measure of how well the bandwidth makes use of the available green time for the 
coordinated movements at the most critical intersection in the corridor. 

Bandwidth efficiency 
 A measure that normalizes bandwidth against the cycle length for the arterial under study. 

Barnes’ Dance 
A common term for an exclusive pedestrian phase where pedestrians may cross all 
intersections legs and sometimes diagonally.   

Barrier 
A separation of intersecting movements in separate rings to prevent operating conflicting 
phases at the same time.   

Base condition 
The best possible characteristic in terms of capacity for a given type of transportation 
facility; that is, further improvements would not increase capacity; a condition without 
hindrances or delays. 

Base saturation flow rate  
The maximum steady flow rate—expressed in passenger cars per hour per lane—at which 
previously stopped passenger cars can cross the stop line of a signalized intersection 
under base conditions, assuming that the green signal is available and no lost times are 
experienced. 

Call 
A term used to describe the presence of vehicle, bicycle, or pedestrian demand in an 
actuated detection controller system. 

Capacity 
The maximum rate at which vehicles can pass through the intersection under prevailing 
conditions.  It is also the ratio of time during which vehicles may enter the intersection.   
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Carryover 
A term commonly used for the “extend” setting in controller manuals.  It is another way to 
describe the time provided for a vehicle to traverse from one detector to the next. 

Change interval 
The yellow plus red clearance interval that occurs between phases of a traffic signal to 
provide for clearance of the intersection before conflicting movements are released. Also 
known as the clearance interval. 

Clearance lost time 
The time, in seconds, between signal phases during which an intersection is not used by 
any traffic. 

Clearance time 
The time loss at a transit stop, not including passenger dwell times. This parameter can be 
the minimum time between one transit vehicle leaving a stop and the following vehicle 
entering and can include any delay waiting for a sufficient gap in traffic to allow the transit 
vehicle to reenter the travel lane. 

Condition Diagram 
An illustration used to highlight the existing characteristics (i.e., number of lanes, signs, 
adjacent driveways, turn-bay lengths, traffic control, and land uses) of an intersection. 

Concurrent Phases 
Two or more phases in separate rings that are able to operate together without conflicting 
movements.    

Congested flow 
A traffic flow condition caused by a downstream bottleneck. 

Control Delay  
The amount of additional travel time experienced by a user attributable to a control device.   

Controller Memory  
A term that refers to the controller’s ability to “remember” (i.e., retain) a detector actuation 
and includes one of two modes (nonlocking or locking).   

Coordinated-Actuated 
Signal operations in coordination with other intersections, and using vehicle, bicycle, and/or 
pedestrian detection to define signal timing. 

Coordinated Phase(s) 
The phase (or phases) that is provided a fixed minimum amount of time each cycle under a 
coordinated timing plan.  This phase is typically the major through phase on an arterial. 

Coordination 
The ability to synchronize multiple intersections to enhance the operation of one or more 
directional movements in a system. 

Corridor 
A set of essentially parallel transportation facilities designed for travel between two points. 
A corridor contains several subsystems, such as freeways, rural (or two-lane) highways, 
arterials, transit, and pedestrian and bicycle facilities. 

Critical lane group 
The lane groups that have the highest flow ratio for a given signal phase.  

Critical movement analysis 
A simplified technique for estimating phasing needs and signal timing parameters. 
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Critical speed 
The speed at which capacity occurs for a facility, usually expressed as miles per hour.  

Critical volume-to-capacity ratio 
The proportion of available intersection capacity used by vehicles in critical lane groups. 

Crosswalk 
A marked area for pedestrians crossing the street at an intersection or designated midblock 
location. 

Cycle 
A complete sequence of signal indications. 

Cycle Length 
The time required for a complete sequence of signal indications. 

Cycle Failure 
Occasion where all queued vehicular demand cannot be served by a single green 
indication or signal phase.        

Dallas Display 
A type of signal display that attempts to avoid “yellow trap” problem by using louvers on the 
yellow and green ball indications to restrict visibility of the left-turn display to adjacent lanes 
while displaying indications based on the opposing through movement. 

Delay 
1. The additional travel time experienced by a driver, passenger, or pedestrian. 

2.  A detector parameter typically used with stop-line, presence mode detection for turn 
movements from exclusive lanes  

Density 
The number of vehicles on a roadway segment averaged over space, usually expressed as 
vehicles per mile or vehicles per mile per lane. (see also: volume-density, sometimes 
referred to as density timing) 

Demand 
The volume of traffic at an intersection, approach, or movement. 

Detector 
A device used to count and/or determine the presence of a vehicle, bicycle, or pedestrian.   

Dilemma Zone 
There are two types of dilemma zones. 

Type I occurs when yellow and red clearance times are too short for a driver to either stop 
or clear the intersection before the beginning of a conflicting phase. 

Type II, also known as an “Option Zone”, ore “Indecision Zone”.  This occurs as the result 
of different drivers making different decision on whether to go or stop, upon the change 
from a green to yellow indication. 

Double Cycle 
A cycle length that allows phases to be serviced twice as often as the other intersections in 
the coordinated system. 

Downstream 
The direction of traffic flow. 
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Early Return to Green 
A term used to describe the servicing of a coordinated phase in advance of its programmed 
begin time as a result of unused time from non-coordinated phases.    

Effective green time  
The time during which a given traffic movement or set of movements may proceed; it is 
equal to the cycle length minus the effective red time.  

Effective red time 
The time during which a given traffic movement or set of movements is directed to stop; it is 
equal to the cycle length minus the effective green time.  

Effective walkway width 
The width, in feet, of a walkway usable by pedestrians, or the total walkway width minus the 
width of unusable buffer zones along the curb and building line. 

Exclusive pedestrian phase 
 An additional phase that is configured such that no vehicular movements are served 
concurrently with pedestrian traffic.  See also, Barnes Dance. 

Exclusive turn lane  
A designated left- or right-turn lane or lanes used only by vehicles making those turns.  

Extend 
A detector parameter that extends a detector actuation  by a setable fixed amount. It is 
typically used with detection designs that combine multiple advance detectors and stop-line 
detection for safe phase termination of high-speed intersection approaches.   

Field Implementation 
A term used to describe the installation of new signal timings in the controller and the 
review of traffic operations at the intersection. 

Fixed Force Off 
A force off mode where force off points cannot move.  Under this mode, non-coordinated 
phases can utilize unused time of previous phases. 

Fixed Time Signal Control 
A preset time is given to each movement every cycle regardless of changes in traffic 
conditions.  

Flashing Don’t Walk 
An indication warning pedestrians that the walk indication has ended and the don’t walk 
indication will begin at the end of the pedestrian clearance interval.  

Flashing Yellow Arrow  
A type of signal head display that attempts to avoid the “yellow trap” problem by providing a 
permissive indication to the driver that operates concurrent with the opposing through 
movement rather than the adjacent through movement.  

Floating Force Off 
A force off mode where force off points can move depending on the demand of previous 
phases.  Under this mode, non-coordinated phase times are limited to their defined split 
amount of time and all unused time is dedicated to the coordinated phase. Essentially, the 
split time is treated as a maximum amount for the non-coordinated phases. 

Floating car method 
 A commonly employed technique for travel time runs which requires the vehicle driver to 
“float” with the traffic stream while traveling at a speed that is representative of the other 
vehicles on the roadway and to pass as many vehicles as pass the floating car. 
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Flow rate  
The equivalent hourly rate at which vehicles, bicycles, or persons pass a point on a lane, 
roadway, or other trafficway; computed as the number of vehicles, bicycles, or persons 
passing the point, divided by the time interval (usually less than 1 h) in which they pass; 
expressed as vehicles, bicycles, or persons per hour.  

Flow ratio 
The ratio of the actual flow rate to the saturation flow rate for a lane group at an 
intersection. 

Force Off 
A point within a cycle where a phase must end regardless of continued demand.  These 
points in a coordinated cycle ensure that the coordinated phase returns in time to maintain 
its designated offset. 

Free flow 
A flow of traffic unaffected by upstream or downstream conditions. 

Fully actuated control 
A signal operation in which vehicle detectors at each approach to the intersection control 
the occurrence and length of every phase. 

Gap 
The time, in seconds, for the front bumper of the second of two successive vehicles to 
reach the starting point of the front bumper of the first. 

Gap Reduction 
This is a feature that reduces the passage time to a smaller value while the phase is active.   

Green time 
The duration, in seconds, of the green indication for a given movement at a signalized 
intersection.  

Green time ratio 
The ratio of the effective green time of a phase to the cycle length. 

Green Extension 
A signal priority treatment to extend a current green phase to give priority to a specific 
movement or vehicle, typically transit. 

Hardware 
The devices that physically operate the signal timing controls, including the controller, 
detectors, signal heads, and conflict monitor. 

Headway 
(1) The time, in seconds, between two successive vehicles as they pass a point on the 

roadway, measured from the same common feature of both vehicles (for example, the 
front axle or the front bumper);  

(2) The time, usually expressed in minutes, between the passing of the front ends of 
successive transit units (vehicles or trains) moving along the same lane or track (or 
other guideway) in the same direction. 

Hardware in the Loop (HITL) 
A means of providing a direct linkage between simulation models and actual signal 
controllers. 
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Highway Capacity Manual 
A National Academies of Science/Transportation Research Board manual containing a 
collection of state-of-the-art techniques for estimating the capacity and determining the 
level-of-service for transportation facilities, including intersections and roadways as well as 
facilities for transit, bicycles, and pedestrians. 

Inhibit Max 
A basic timing parameter that removes the Maximum Green input as a phase parameter 
during coordination and allows the phase to extend beyond its normal maximum green 
values. 

Interval 
The duration of time where a traffic signal indications do not change state (red, yellow, 
green, flashing don’t walk). A traffic signal controller also has timing intervals (min green, 
passage time) that determine the length of the green interval. 

Intersection Delay - Average 
The total additional travel time experienced by users as a result of control measures and 
interactions with other users divided by the volume departing from the intersection. 

Intersection Level of Service 
A qualitative measure describing operational conditions based on average intersection 
delay. 

Isolated intersection 
An intersection at least one mile from the nearest upstream signalized intersection. 

Lagging pedestrian interval  
A pedestrian timing option that starts pedestrian walk interval several seconds after the 
adjacent through movement phase, thus allowing a waiting right-turn queue to clear before 
the pedestrian walk indication is presented and thereby reducing conflicts with right-turning 
vehicles. 

Lane group 
A set of lanes established at an intersection approach for separate capacity and level-of-
service analysis.  

Lane group delay 
The control delay for a given lane group.  

Lane utilization 
The distribution of vehicles among lanes when two or more lanes are available for a 
movement; however, as demand approaches capacity, uniform lane utilization develops. 

Leading pedestrian interval  
A pedestrian interval option that starts a few seconds before the adjacent through 
movement phase, thus allowing pedestrians to establish a presence in the crosswalk and 
thereby reducing conflicts with turning vehicles.  

Lead-Lag Left-Turn Phasing 
A left-turn phase sequence where one left-turn movement begins with the adjacent through 
movement and the opposing left-turn movement begins at the end of the conflicting through 
movement.  This option may create a “yellow trap” with some permissive signal displays. 

Level of service 
A qualitative measure describing operational conditions within a traffic stream, based on 
service measures such as speed and travel time, freedom to maneuver, traffic 
interruptions, comfort, and convenience. 
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Local Controller 
The device used to operate and control the signal displays using signal timing provided by 
the user, master controller, or central signal system. 

Locking mode 
A controller memory mode used to trigger a call for service for the first actuation received 
by the controller on a specified channel during the red interval 

Lost Time 
The portion of time at the beginning of each green period and a portion of each yellow 
change plus red clearance period that is not usable by vehicles. 

Master Clock 
The background timing mechanism within the controller logic to which each controller is 
.referenced during coordinated operations.   

Master Controller 
An optional component of a signal system that facilitates coordination of a signal system 
with the local controller. 

Manual on Traffic Control Devices (MUTCD) 
The MUTCD, published by the Federal Highway Administration, provides the standards and 
guidance for installation and maintenance for traffic control devices on roadways. 

Maximum Allowable Headway (MAH) / Maximum Time Separation 
The maximum time separation between vehicle calls on an approach without gapping out 
the phase, typically defined by passage time or gap time. Maximum allowable headway 
refers to spacing between common points of vehicles in a single lane, but the term is 
commonly used to refer to maximum time separation  in single or multi-lane approaches as 
well. 

Maximum Green 
The maximum length of time that a phase can be green in the presence of a conflicting call. 

Maximum Initial 
The maximum period of time for which the Added Initial can extend the initial green period.  
This cannot be less than the Minimum Green time. 

Maximum Recall 
A recall mode that places a continuous call on a phase. 

Measure of effectiveness 
A quantitative parameter indicating the performance of a transportation facility or service. 

Minimum Gap 
This volume density parameter that specifies the minimum green extension when gap 
reduction is used..   

Minimum Green 
The first timed portion of the green interval which may be set in consideration driver 
expectany and the storage of vehicles between the detectors and the stop line when 
volume density or presence detection is not used. 

Minimum Recall 
A recall parameter the phase is timed for its minimum green time regardless what the 
demand is for the movement. 
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Movement 
A term used to describe the user type (vehicle or pedestrian) and action (turning 
movement) taken at an intersection.  Two different types of movements include those that 
have the right of way and those that must yield consistent with the rules of the road or the 
Uniform Vehicle Code. 

Non-locking mode 
A controller memory mode that does not retain an actuation received from a detector by the 
controller after the actuation is dropped by the detection unit.   

Occupancy  
The percent of time that a detector indicates a vehicle is present over a total time period.   

Offset 
The time relationship between coordinated phases  defined reference point and a defined 
master reference (master clock or sync pulse). 

Offset Reference Point (Coordination Point) 
The defined point that creates an association between a signalized intersection and the 
master clock.   

Overflow queue 
Queued vehicles left over from a green phase at a signalized intersection.  

Oversaturation 
A traffic condition in which the arrival flow rate exceeds capacity. 

Passage Time (Vehicle Interval, Gap, Passage Gap, Unit Extension) 
A phase timer that ends a phase when the time from the last detector output exceeds the 
timer setting.    

Pattern Sync Reference 
The set start of the master clock. 

Peak-hour factor 
The hourly volume during the maximum-volume hour of the day divided by four times the 
peak 15-min flow rate within the peak hour; a measure of traffic demand fluctuation within 
the peak hour.  

Pedestrian 
An individual traveling on foot. 

Pedestrian Recall 
A recall mode where there is a continuous call for pedestrian service resulting in the 
pedestrian walk and clearance phases to occur each time the phase times. 

Pedestrian Clearance Interval 
Also known as “Flash Don’t Walk”.  The time provided for a pedestrian to cross the entire 
width of the intersection. 

Pedestrian Phase 
Time allocated to pedestrian traffic that may be concurrent with vehicular phases. 

Pedestrian scramble  
See Exclusive Pedestrian Phase 

Pedestrian Walk Interval 
An indication to the pedestrian that it allows pedestrians to begin crossing the intersection.  
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Pedestrian walking speed 
The average walking speed of pedestrians, in feet per second. 

Percent Runs Stopped  
The percentage of the total number of travel time runs conducted during which a vehicle 
stops. 

Performance Index 
 An arterial- and network-Level performance measure that allows several measures of 
effectiveness to be mathematically combined. 

Performance Measures 
Signal system  related effects on stops, vehicle delay, arterial travel time, or existence of 
spill back queuing between closely spaced intersections. 

Permissive Movements 
A movement where it is allowed to proceed if there are available gaps in the conflicting 
flow.  

Permissive Period 
A period of time during the coordinated cycle in which calls on conflicting phases will be 
result in the coordinated phase transitioning to non-coordinated phase(s)..  

Permitted plus protected 
Compound left-turn protection that displays the permitted phase before the protected 
phase. 

Permitted turn 
Left or right turn at a signalized intersection that is made against an opposing or conflicting 
vehicular or pedestrian flow. 

Phase 
A controller timing unit associated with the control of one or more movements.  The 
MUTCD defines a phase as the right-of-way, yellow change, and red clearance intervals in 
a cycle that are assigned to an independent traffic movement. 

Phasing Indication 
The current display for a given phase (green, yellow, red, walk, flashing don’t walk, or don’t 
walk).    

Phase Pair 
A combination of two phases allowed within the same ring and between the same barriers 
such as 1+2. 5+6, 3+4, and 7+8.  

Phase Recall 
A call is placed for a specified phase each time the controller is servicing a conflicting 
phase. This will ensure that the specified phase will be serviced again. Types of recall 
include soft, minimum, and maximum. Soft recall only calls the phase back if there is an 
absence of conflicting calls. 

Phase Sequence 
The order of a series of phases.    

Phasing Diagram 
A graphical representation of a sequence of phases.    

Platoon 
A group of vehicles or pedestrians traveling together as a group, either voluntarily or 
involuntarily because of signal control, geometrics, or other factors. 
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Preemption 
Traffic signal preemption is the transfer of normal operation of a traffic control signal to a 
special control mode of operation.  

Preempt Trap 
A condition that can occur when a preemption call is serviced at a signalized intersection 
near an at-grade train-roadway crossing, where not enough clearance green time is 
provided to clear a queue of vehicles, and a vehicle could be trapped on the tracks with the 
railroad crossing lights and gates come down.  

Presence Mode 
A detection mode where a signal is sent to the controller for the duration of time a vehicle is 
inside the detection zone.  

Pretimed control 
A signal control in which the cycle length, phase plan, and phase times are preset to repeat 
continuously. 

Priority 
Traffic signal priority (TSP) is an operational strategy communicated between transit 
vehicles and traffic signals to alter signal timing for the benefit or priority of transit vehicle. 
Green extension, red truncation, and phase skipping are examples of signal timing 
alterations under TSP.  

Progression adjustment factor 
A factor used to account for the effect of signal progression on traffic flow; applied only to 
uniform delay.  

Protected Movements 
A movement where it has the right-of-way and there are no conflicting movements 
occurring.   

Protected plus permitted 
Compound left-turn protection at a signalized intersection that displays the protected phase 
before the permitted phase.  

Protected turn 
The left or right turns at a signalized intersection that are made with no opposing or 
conflicting vehicular or pedestrian flow allowed. 

Pulse Mode 
A detection mode where vehicle detection is represented by a single “on” pulse to the 
controller.  

Queue 
A line of vehicles, bicycles, or persons waiting to be served by the system in which the flow 
rate from the front of the queue determines the average speed within the queue. Slowly 
moving vehicles or people joining the rear of the queue are usually considered part of the 
queue. The internal queue dynamics can involve starts and stops. A faster-moving line of 
vehicles is often referred to as a moving queue or a platoon. 

Queue discharge 
A flow with high density and low speed, in which queued vehicles start to disperse. Usually 
denoted as Level of Service F. 

Queue spillback 
A term used to describe vehicles stopped at an intersection that exceed the available 
storage capacity for a particular movement. 
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Queue storage ratio 
The parameter that uses three parameters (back of queue, queued vehicle spacing, and 
available storage space) to determine if blockage will occur. 

Quick-Estimation Method 
A method detined in Chapter 10 of the HCM 2000 that allows an analyst to identify the 
critical movements at an intersection, estimate whether the intersection is operating below, 
near, at, or over capacity, and approximate the amount of green time needed for each 
critical movement. 

Red Change Interval 
The period of time following a yellow period indicating the end of a phase and stopping the 
flow of traffic. 

Red time 
The period, expressed in seconds, in the signal cycle during which, for a given phase or 
lane group, the signal is red. 

Red Truncation 
A signal priority treatment to terminate non-priority approach green phasing early in order to 
more quickly return to green for the priority approach.  This treatment is also known as 
early return to green. 

Ring 
An phases that operate in sequence.  

Ring Barrier Diagram 
A graphical representation of phases within a set of rings and phases within a set of 
barriers. 

Saturation Flow Rate 
The equivalent hourly rate at which vehicles can traverse an intersection approach under 
prevailing conditions, assuming a constant green indication at all time and no loss time, in 
vehicles per hour or vehicles per hour per lane. 

Saturation headway 
The average headway between vehicles occurring after the fourth vehicle in the queue and 
continuing until the last vehicle in the initial queue clears the intersection. 

Section 
A group of signalized intersections used to analyze traffic operations, develop new signal 
timings, and operate in the same control mode—manual, time of day, or traffic responsive  

Segment 
A portion of a facility on which a capacity analysis is performed; it is the basic unit for the 
analysis, a one-directional distance. A segment is defined by two endpoints.  

Semi-Actuated Control 
A type of signal control where detection is provided for the minor movements only and the 
signal timing returns to the major movement because it has no detection and is placed in 
recall.   

Signal Head 
An assembly of one or more signal indications. 

Signal Coordination 
An operational mode that synchronizes a series of traffic signals to enhance the operation 
of one or more directional movements. 
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Signal Warrant 
A threshold condition to determine whether a traffic signal is justified based on satisfaction 
of an engineering study.  There are eight warrants provided in the MUTCD. 

Signalization condition 
A phase diagram illustrating the phase plan, cycle length, green time, change interval, and 
clearance time interval of a signalized intersection.  

Simple left turn protection 
A signal phasing scheme that provides a single protected phase in each cycle for a left 
turn.  

Simultaneous Gap 
This parameter requires all phases to concurrently “gap out” prior to crossing the barrier. 

Software in the loop (SITL) 
A means of providing a direct linkage between simulation models and software emulations 
of controllers, 

Speed 
A rate of motion expressed as distance per unit of time. 

Split 
The time assigned to a phase (green and the greater of the yellow plus all-red or the 
pedestrian walk and clearance times) during coordinated operations.  May be expressed in 
seconds or percent. 

Start-up lost time  
The additional time, in seconds, consumed by the first few vehicles in a queue at a 
signalized intersection above and beyond the saturation headway, because of the need to 
react to the initiation of the green phase and to accelerate. 

Stopped Delay  
A measurement of the aggregate sum of stopped vehicles for a particular time interval 
divided by the total entering volume for that movement. 

Stop time  
A portion of control delay when vehicles are at a complete stop. 

Time-Before-Reduction 
This volume density timing period begins when the phase is Green and there is a 
serviceable call on a conflicting phase. When this period is completed, the linear reduction 
of the Passage Time begins. 

Time of Day Plans 
Signal timing plans associated to specific hours of the day associated with fluctuations in 
demand. 

Time-Space Diagram 
A chart that plots the location of signalized intersections along the vertical axis and the 
signal timing along the horizontal axis.  This is a visual tool that illustrates coordination 
relationships between intersections. 

Time-To-Reduce 
This volume density timing period begins when the Time-Before-Reduction ends and 
controls the linear rate of reduction until the Minimum Gap is achieved. 

Total delay 
The sum of all components of delay for any lane group, including control delay, traffic 
delay, geometric delay, and incident delay . 
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Total lost time 
The time per signal cycle during which the intersection is effectively not used by any 
movement; this occurs during the change and clearance intervals and at the beginning of 
most phases. 

Track Clearance Green Time 
Associated with rail preemption at signalized intersection near rail crossings. Track 
clearance green time is the signal timing provided to an approach to ensure queued 
vehicles can be moved off the rail crossing, prior to the beginning of railroad warning lights 
and gate lowering. 

Traffic Control Center (Traffic Management Center) 
An optional physical component of a signal system which contains the operational 
database that stores controller data, allows monitoring of the system, and allows timing and 
other parameters to be modified. 

Traffic Control Devices 
A device used to control conflicting traffic flows, typically at an intersection.  Examples 
include traffic signals, stop signs, yield signs, and roundabouts. 

Traffic Responsive Operation 
A signal operational method which uses data from traffic detectors, rather than time of day, 
to automatically select the timing plan best suited to current traffic conditions.  

Traffic Signal 
A device to warn, control, or direct at least one traffic movement at an intersection. 

Traffic Signal Controller 
A device controlling indication changes at a traffic signal.   

Traffic Signal Inventory:   
A database related to the traffic signal including information such as location, signal layout, 
signal timing, coordinated or uncoordinated signal operation, communication, operating 
agency, and history of updates.    

Transit Efficiency 
Performance measures for transit vehicles such as percent on-time, ridership, and travel 
time.    

Travel Time (Average) 
The total elapsed time spent traversing a specified distance.  The average travel time 
represents an average of the runs for a particular link or corridor. 

Travel Time and Delay Study 
This study is used to evaluate the quality of traffic movements along an arterial and 
determine the locations, types, and extent of traffic delays.  Typical measures of 
effectiveness include travel time, delay, percent runs stopped, and average speed.  

Two-way left-turn lane 
A lane in the median area that extends continuously along a street or highway and is 
marked to provide a deceleration and storage area, out of the through-traffic stream, for 
vehicles traveling in either direction to use in making left turns at intersections and 
driveways. 

Uniform delay 
The first term of the equation for lane group control delay, assuming uniform arrivals. 
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Uniform Vehicle Code 
A set of traffic laws prepared by the National Committee on Uniform Traffic Laws and 
Ordinances.  The specific traffic laws within the code vary from state to state and within 
different jurisdictions.  

Unit extension 
See passage time 

Unmet demand 
The number of vehicles on a signalized lane group that have not been served at any point 
in time as a result of operation in which demand exceeds capacity, in either the current or 
previous analysis period. This does not include the normal cyclical queue formation on the 
red and discharge on the green phase.  

Upstream 
The direction from which traffic is flowing. 

Variable Initial 
A volume density parameter that uses detector activity to determine if the initial green 
interval will exceed minimum green time. 

Volume 
The number of persons or vehicles passing a point on a lane, roadway, or other traffic-way 
during some time interval, often 1 h, expressed in vehicles, bicycles, or persons per hour. 

Volume-Density 
A phase timing function that uses parameters (variable initial, min gap, time before 
reduction, time to reduce) to provide appropriate minimum green time to clear intersection 
queues when stop bar detectors are not used and/or it is desired to adjust the passage 
time. 

Volume-to-Capacity Ratio 
Also known as degree of saturation is a ratio of demand volume to the capacity for a 
subject movement.  

Walk Interval 
An indication providing right-of-way to pedestrians during a phase.  

Yellow Change Interval 
An indication warning users that the green indication has ended and the red indication will 
begin.  

Yellow Extension 
The portion of the yellow change interval that some vehicles use to pass through the 
intersection during the yellow change interval.   

Yellow Trap 
A condition that leads the left-turning driver into the intersection when it is possibly unsafe 
to do so even though the signal displays are correct.   

Yield Point 
A point in a coordinated signal operation that defines where the controller decides to 
terminate the coordinated phase. 
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1.0 INTRODUCTION 

This Traffic Signal Timing Manual (TSTM) is intended to be a comprehensive guide to the traffic 
signal timing engineer and technician on traffic signal control logic principles, practices, and 
procedures. The TSTM represents a synthesis of traffic signal timing concepts, analytical 
procedures, and applications based on North American practice into a single publication. The 
manual also presents a framework for evaluating traffic signal timing applications related to 
maintenance and operations. 

This manual is intended to complement policy documents such as the Manual on Uniform 
Traffic Control Devices, and is not intended to replicate or replace the Highway Capacity Manual, 
national or local engineering documents on signal timing, nor is it intended to serve as a standard 
or policy document. Rather, it provides a summary of practices intended to help practitioners in the 
timing of traffic signals. 

1.1 BACKGROUND 
The origin of traffic control signals can be traced back to the manually operated semaphores 

first used in London as early as 1868. The first traffic signal in the United States was developed 
with the objective to prevent accidents by alternatively assigning right of way. The traffic signal has 
changed significantly since its early development. 

Today, there are more than 272,000 traffic signals in the United States (1). They play an 
important role in the transportation network and are a source for significant frustration for the public 
when not operated efficiently. As the era of freeway building draws to a close, urban arterials are 
being called upon to carry more users than ever before at a time when the users of these facilities 
are growing more complex (older drivers, more distractions, larger vehicles, etc) and the demand 
for such use continues to outpace transportation supply. According to the 2001 Nationwide 
Personal Transportation Survey, on average, an individual traveled 40 miles per day, up from 
approximately 35 in 1990 (2). At the same time, the use of traffic signals at a busy intersection in a 
typical urban area might direct the movement of as many as 100,000 vehicles per day. In fact over 
ten percent of all intersections in California carry more than 60,000 Average Daily Traffic (ADT) for 
movements (3).  It is estimated that many of these signals could be improved by updating 
equipment or by simply adjusting and updating the timing plans. Outdated or poor traffic signal 
timing accounts for a significant portion of traffic delay on urban arterials and traffic signal retiming 
is one of the most cost effective ways to improve traffic flow and is one of the most basic strategies 
to help mitigate congestion.   

Despite their important role in traffic management, traffic signals, once installed, are often not 
proactively managed. Maintenance activities are frequently delayed or canceled, in reaction to 
shrinking budgets and staffs. More than half of the signals in North America are in need of repair, 
replacement, or upgrading. In 2007, the National Traffic Signal Report Card was released by the 
National Transportation Operations Coalition and consisted of the composite national scores from 
an agency self-assessment related to traffic signal control and operations, the responses in five sub 
areas indicate an overall national "grade" of D up from a D- in 2005. (4). 

FHWA has recognized the critical role that traffic signal timing plays within the overall 
transportation network. Signal timing offers the opportunity to improve the mobility and safety of the 
street system and contribute environmental benefits. This document is intended to further increase 
the awareness of the need for resources devoted to operation of the transportation system. 

1.1.1 Purpose of Traffic Signals 

The Manual on Uniform Traffic Control Devices (MUTCD) defines a traffic control signal as any 
highway traffic signal by which traffic is alternatively directed to stop and permitted to proceed. 
Traffic is defined as pedestrians, bicyclists, ridden or herded animals, vehicles, streetcars, and 
other conveyances either singularly or together while using any highway for purposes of travel. (5)  

1-1 



It is with this need to assign the right of way at locations that we consider the dual purpose of 
traffic signals —efficiency and safety— which in some cases seem to be conflicting.  Safety may be 
seen as an element needed to be sacrificed in order to achieve improvements in efficiency and 
meet ever-increasing demands.  The reality is that traffic signals can, and in fact must, serve both 
operational efficiency and safety based on the conditions. The MUTCD goes on to describe that 
traffic control signals can be ill-designed, ineffectively placed, improperly operated, or poorly 
maintained, with resulting outcomes of excessive delay, disobedience of the indication, avoidance, 
and increases in the frequency of collisions. 

A traffic signal that is properly designed and timed can be expected to provide one or more of 
the following benefits:  

1. Provide for the orderly and efficient movement of people. 

2. Effectively maximize the volume movements served at the intersection. 

3. Reduce the frequency and severity of certain types of crashes. 

4. Provide appropriate levels of accessibility for pedestrians and side street traffic. 

The degree to which these benefits are realized is based partly on the design and partly on the 
need for a signal.  A poorly designed signal timing plan or an unneeded signal may make the 
intersection less efficient, less safe, or both. 

1.1.2 Intersection Design and its Relationship to Signal Timing 

The design of the intersection has a direct influence on its safety and operation from a design 
and user-ability perspective.  Design elements that are particularly relevant include the number of 
lanes provided on each approach and for each movement, whether there are shared thru-and-turn 
lanes, the length of turn bays, the turning radii (especially important for pedestrians), the presence 
of additional through lanes in the vicinity of the intersection, the size and location of detectors, and 
presence or absence of left-turn phasing.  Other geometric features, like additional through or turn 
lanes, can also have a significant positive impact on intersection capacity, provided that they are 
sufficiently long.  The other aspect of intersection design is the perception and reaction of the end 
users.  Various decisions need to be made as a user approaches the intersection, which makes it 
important to simplify the decision making process.   

Another aspect of the design is detection. Detectors provide the ability to sense vehicle and 
pedestrian demands at an intersection; enabling modes of operation that may be more efficient 
than fixed or pre-timed control. It is critical that functional and properly designed detectors 
communicate with the controller to ensure continued functional signal control at the intersection.  
Detectors that are improperly located or are an inappropriate length can unnecessarily extend the 
green indication and increase the frequency of phase termination to the maximum limit (i.e., max 
out). Conversely, a poorly located detector could cause premature gap-out. A protected left-turn 
phase provides a time separation for left-turning and opposing traffic streams and may reduce left-
turn delays or related crashes. However, the additional phase increases the minimum cycle length 
and may increase intersection delays and, in the case of a protected-only left-turn, may even 
increase left-turn delay.  

The topics discussed in this section are intended to serve as a reminder of the close 
relationship between signal timing, intersection design, and traffic control device layout.  The quality 
of the signal timing plan is directly tied to the adequacy of the intersection design and the traffic 
control device layout.  In some situations, achieving safe and efficient intersection operation may 
require changes to the intersection design or the traffic control device layout. The subsequent 
chapters of this manual provide more detailed information about the role of these factors in signal 
timing plan development. 

1.1.3 Objectives of Basic Signal Timing Parameters and Settings 

A primary objective of signal timing settings is to move people through an intersection safely 
and efficiently.  Achieving this objective requires a plan that allocates right-of-way to the various 
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users. This plan should accommodate fluctuations in demand over the course of each day, week, 
and year.   

Because travel demand patterns change over time, the signal timing plan 
should be periodically updated to maintain intersection safety and efficiency.  

There are many signal timing parameters that affect intersection efficiency including the cycle 
length, movement green time, and clearance intervals.  Increasing a traffic movement’s green time 
may reduce its delay and the number of vehicles that stop. However, an increase in one 
movement’s green time generally comes at the expense of increased delay and stops to another 
movement.  Thus, a good signal timing plan is one that allocates time appropriately based on the 
demand at the intersection and keeps cycle lengths to a minimum.  

The relationship between signal timing and safety is also addressed with specific timing 
parameters and the design of the intersection. For instance, the intent of the yellow change interval 
is to facilitate safe transfer or right-of-way from one movement to another. The safety benefit of this 
interval is most likely to be realized when its duration is consistent with the needs of drivers 
approaching the intersection at the onset of the yellow indication. This need relates to the driver’s 
ability to perceive the yellow indication and gauge their ability to stop before the stop line, or to 
travel through the intersection safely. Their decision to stop, or continue, is influenced by several 
factors, most notably speed. Appropriately timed yellow change intervals have been shown to 
reduce intersection crashes (6). Signal timing plans that reduce the number of stops and minimize 
delays may also provide some additional safety benefits. 

The traffic signal controller at an intersection implements timing settings 
designed for that specific location. The settings are designed to respond to 
users at the intersection and meet objectives defined by the policies of the 
responsible agency.  

The policies may include standards defined by the agency with potential guidance from regional 
or state standards and must consider pedestrians, vehicular traffic conditions, change and 
clearance intervals, and if actuated, detection layout.  These settings may be influenced by 
adjacent intersections (the concept of coordination is more fully explored in Chapter 6), but are 
applicable for each intersection considered as an isolated unit.   

1.1.4 Establishing the Need for Retiming 

Traffic professionals have long recognized the value of designing effective signal timing to meet 
changing travel patterns and characteristics. In 1995, the U.S. General Accounting Office (GAO) 
reported, “Properly designed, operated and maintained traffic control signal systems yield 
significant benefits along the corridors and road networks on which they are installed. They mitigate 
congestion and reduce accidents, fuel consumption, air pollutants and travel times. Resource 
constraints have prevented the use of traffic signals to their full potential. The Traffic Signal Report 
Card Technical Report goes on to state:  

“It became clear that for safety and liability reasons, agencies must ensure a 
basic level of operation of the traffic signal system so that signals continue to turn 
green, yellow and red. The signals may not function efficiently for traffic or 
pedestrians, but, technically, the signals are working and that is what people see. 
However, the uniformly low scores (on the National Report Card) indicate that, for 
the most part, people consistently experience poor traffic signal performance and, 
as a consequence, their expectations are low. The pattern, once again, is one 
where agencies are forced to use their resources to deal with critical maintenance 
issues when they arise rather than proactively. Signal systems are managed to 
simply ensure base levels of performance.” 

The National Transportation Operations Coalition (NTOC) and FHWA continue to work to make 
the case that additional resources are needed to develop signal timing plans and to modernize 
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equipment. There’s an old saying that transportation engineers leave a little of their intelligence on 
the street when they design an intersection, but these designs are limited by the technology they 
have to work with. The use of 20-year-old technology and infrastructure may satisfy the requirement 
for the signal to display green, yellow, and red, but it may not offer the opportunity to efficiently 
operate the system or provide preferential treatment for a certain type of user to meet the policies 
and desires of the community. In most cases, upgraded equipment improves the efficiency for staff 
to manage the system, assuming the staff is properly trained to operate the upgraded equipment. 

These efficiencies are observed with updating traffic signal timing plans, developing new 
strategies to improve transportation, and improving customer service. There have been some great 
technological advances in the past five years, such as the development of transit signal priority, 
which seeks to provide preferential treatment to buses as they approach the traffic signal. This new 
technology allows the engineer to allocate green time that more closely reflects the community’s 
transportation policies. 

The MUTCD also speaks to the issue of efficiency and recommends proper design and signal 
timing to ensure that it satisfies current traffic demands. The Maintenance of signal timing plans will 
be described in Chapter 8 of this document. This statement does not speak to the need to provide 
preferential treatment or other policies that will be further described in Chapter 9 of this document. 

1.1.5 Benefits of Up-to-Date Timing  

Studies around the country have shown that the benefits of area-wide signal timing outweigh 
the costs 40:1 (or more).  The benefits of up-to-date signal timing include shorter commute times, 
improved air quality, reduction in certain types and severity of crashes, and reduced driver 
frustration.(7) 

The NTOC recently surveyed the quality of traffic signal operations in the United States.  The 
NTOC concluded that the nation scored a D in terms of the overall quality of traffic signal operation. 
“If the nation supported its signals at an ‘A’ level, we would see: 

• Reductions in traffic delay ranging from 15-40% (8); reductions in travel time up to 25%; 
and reductions in stops ranging from 10-40% (9).  For example, if you spent two hours in 
your car commuting to and from work and running errands, you’d save 50 hours per year 
(or more than a work week) because of improved signal timing. 

• Reductions in fuel consumption of up to 10%.  Nationwide this would amount to a savings 
of almost 170 billion gallons of motor fuels per year.(10)   

• Reduction in harmful emissions (carbon monoxide, nitrogen oxides, volatile organic 
compounds) up to 22% (11).  According to the Surface Transportation Policy Project, 
motor vehicles are the largest source of urban air pollution. (12)  In addition, the EPA 
estimates that vehicles generate 3 billion pounds of air pollutants yearly.(13”,14) 

Beyond the benefits to vehicular traffic, there are opportunities to improve performance for 
transit, pedestrians, and freight movement. Chapter 9 summarizes some of the advanced concepts 
that address some of the broad policies that have gained in popularity since the inception of the 
Intermodal Surface Transportation Efficiency Act of 1991 (15.) 

1.2 ORGANIZATION OF THE MANUAL 
The manual is organized into nine chapters that can be broadly described by four basic parts: 

Part 1 —Policy, Planning, and Funding Considerations (Chapter 2). This part describes the 
need for and benefits of signal timing. It will present a discussion of relevant federal, state, regional, 
and local issues, as well as typical funding needs and options. This section discusses what decision 
makers consider when determining the effect of signal timing on the regional framework.  It also 
presents how the signal timing process described in Chapter 7 fits into the regional planning 
framework.  
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Part 2— Fundamental Concepts of Capacity (Chapter 3) and Traffic Signal Design (Chapter 4).  
This part includes Chapters 3 and 4 which provide key background information needed to 
understand signal timing. This chapter may not be necessary for experienced engineers, but 
provides a basic foundation from which to describe more complicated concepts.  

Part 3— Signal Timing Concepts, Guidelines, and Application and Coordination Plan 
Development (Chapters 5, 6, and 7). This part describes traffic signal timing from the concepts to 
application. It provides guidelines where appropriate based on industry practice. This is a chapter 
that provides several examples from agencies that represent good practice. 

Part 4—Maintenance of Timing (Chapter 8) and Advanced Topics (Chapter 9).  This part 
presents an overview of a number of advanced topics related to improving signal timing operations 
that will be especially relevant to sophisticated timing engineers that are implementing innovative 
strategies (transit signal priority, adaptive signal timing, etc). This section will provide an overview of 
each topic with references to more detailed documents. 

This organization is described in Figure 1-1.  

Figure 1-1  Organization of the Manual 

 

1.3 USE OF THE MANUAL 
The Traffic Signal Timing Manual (TSTM) is intended to be a comprehensive document 

describing the procedures for generating signal timing plans for North American applications. It is 
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intended for use by a range of practitioners; including traffic engineers, signal technicians, design 
engineers, planners, transportation managers, teachers, and university students. To use the 
manual effectively and apply its methodologies, some technical background is desirable, typically 
technical training either provided as a part of continuing education, or at the university-level.  

To help describe the use of this manual, three generalized users of the signal timing manual 
have been identified, planners, designers, and operators/maintenance staff.  Each of these users 
will interact with different elements of the signal timing process, and should understand where and 
how the others are involved. Figure 1-2 shows graphically the interaction or relationship between 
the generalized user function: planning, design, and operations/maintenance, and the key topics of 
signal timing, shown in white. 

 

Figure 1-2  User Interaction within the Signal Timing Process 

 
The general topics shown in Figure 1-2, represent the basic signal timing process, and are 
described in detail within the manual. The topics are described briefly here: 

 Signal Timing Project Initiation– Establish the purpose(s) of the signal timing project 
and how success will be measured. This will encompass all three types of users. 
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 User of the Signal – Determine and prioritize the users on the transportation network 
that the signal must serve. For example, motor vehicles, pedestrians, bicycles, transit, 
emergency vehicles, etc. 

 Geometry – Determine the lane use, dedication, and geometry and roadway 
infrastructure with which the signal timing will interact.  Roadway infrastructure may not 
change, but lane designation and use can change along with signal timing parameters. 
For example, multiple turn-lanes, freeway ramp terminal, channelized movements, turn-
restrictions, phasing, etc. 

 Phasing – Set the appropriate signal phasing scheme(s). For example, split phasing, 
protected left-turns, overlapping movements, etc. 

 Detector Placement – Determine if and where detectors are needed based on desired 
signal operations. For example, pedestrian push buttons or bike/vehicle detection 
locations, or even transit priority or emergency vehicle preemption detection zones. 

 Detector Function – Set the functionality of the detectors. For example, vehicle 
detector settings of pulse or presence or count, or a delay setting for movements with 
heavy right turn on red, or etc. 

 Basic Signal Timing – Calculate or establish the appropriate basic timing parameters. 
For example, pedestrian walk and flash don’t walk, gap or passage time, yellow and all 
red vehicle clearance, etc. 

 Mode of Operation – Will the signal operate in fixed-time, actuated, or adaptive mode? 

 Coordination Plan – Determine if the signal should be coordinated with other nearby 
signals as a system or operate in isolation? Coordinating will require interconnection 
communication lines between traffic signal controller cabinets.  

 Performance Measurement – What measurements will be used to judge the 
performance of the signal timing and operations? Typically performance measurements 
are average delay, travel time, stops, and etc. 

Each of these steps may take place in the planning, design or operation of a traffic signal 
and its signal timing plans. To help understand this interrelationship, let’s take the example of 
detection placement.  From Figure 1-2, we see this area involves both design and 
operations/maintenance. A designer may select a inductive loop detector placement location 
based on a design manual or agency policy for the design travel speed. What the designer 
may not realize is once the loop detection is embedded in the pavement, it is difficult to 
relocate. If the operator or traffic engineer wants to change the posted speed or operate the 
signal using detection intensive, adaptive control, alternate loop locations maybe necessary. 
This would force the costly relocation of the designed loops. If the designer and 
operator/engineer communicate and work together to understand each others needs, a multi-
use solution can be developed to benefit the roadway user. 

Many of the topics discussed in the Traffic Signal Timing Manual will be applicable to 
multiple types of users, and an understanding of signal timing holistically will allow the best 
solutions possible to be developed and implemented, to the gain of the traveling public.  
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2. POLICIES, PROCESS, AND FUNDING 
 

Signal timing is important because it directly affects the quality of our transportation system, which 
affects virtually everything within our communities. Signal timing impacts the time we spend traveling, the 
quality of the air we breathe, the safety of roadway travel, the costs of our trips, and many aspects of our 
daily lives. Signal timing policy is important because it is a way to help control and define priorities within 
the transportation system and how signal timing is applied. A clearly defined signal timing policy should 
be an extension of a region’s transportation policy reflecting a region’s values in the operations and safety 
of their transportation network. The context of the term policy is to support strategic objectives, and do not 
represent global applications in most cases. Engineering judgment should be used in concert with policy 
development and applications in the signal timing realm.  

This chapter describes the relationship between transportation policies and signal timing applications, 
summarized in Figure 2-1. 

Figure 2-1 Transportation Policy and Signal Timing Application Relationships 

 
This chapter contains five sections.  

• The first section presents a summary of policy development.  

• The second section provides an overview of the signal timing process and considers how 
policies should affect several decisions made during signal timing. Examples of different 
signal timing policies are provided as well.  

• The third section presents performance measures and a national perspective with regards to 
signal timing.  

• The fourth section presents a discussion of various funding considerations for signal timing.  

• The final section presents examples of programs that have been effective in coordinating 
signal timing, policy, and performance measures. 
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2.1 POLICY DEVELOPMENT 

 
 

 

The diagram at right illustrates the policy development cycle 
discussed in this section. Signal timing policies flow from the overall 
regional transportation objectives. Local considerations are taken 
into account prior to initiating the specific timing process. Operation 
of the system generates user feedback that, in turn, drives overall 
policy. 

Regional transportation policies, and more specifically signal 
timing policies, guide the strategy for how to operate signalized 
intersections, devices, signal timing equipment, and for prioritizing 
travel modes and/or transportation facilities at a system level 
branching beyond jurisdictional boundaries. Regional transportation 
policies should be used to help establish signal timing policies, 
providing guidance in the development of specific objectives for the 
implementation of signal timing plans. The development of local 
signal timing strategies should consider the regional transportation 
policies to determine if there are regional objectives that will 
influence the process. These policies may also be consulted to 
determine their effect on ongoing operations and maintenance 
activities. The regional transportation policies are a result of a 
community visioning process that develops a plan that:  

• sets the direction and guides the planning for 
improvements for a region's transportation system 
during the next 20 years;  

• establishes policies and priorities for all forms of travel – 
motor vehicle, transit, pedestrian, bicycle and freight – 
and street design and the efficient management of the 
overall system;  

• anticipates the region's current and future travel needs 
based on forecasts of growth in population, households 
and jobs as well as future travel patterns and analysis of 
travel conditions;  

• evaluates federal, state and local funding that will be 
available for transportation improvements; and  

• estimates costs of projects and proposes funding 
strategies to meet these costs.(1) 

The plan is typically developed with the help of elected 
leadership and ultimately represents the attributes the community 
hopes to address. Examples of this type of plan include a 
Transportation Improvement Program (TIP), a Capital Improvement 
Program (CIP), a Long-Range Transportation Plan (LRTP) and 
others.  

The signal timing policies should establish the signal timing 
objectives and performance measures for a jurisdiction all the way 
down to a particular facility or intersection. 

Location-specific considerations must also be identified to determine whether a specific corridor or 
area has special needs. For instance, a city may have a policy of maintaining a high level of mobility on 
its arterial street system, but that may not be applicable within a downtown area that may have a policy of 
maintaining access. An important step in the flow chart to the right is to consider the special needs before 
moving to the next step of the flowchart.  
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The signal timing policies can be used to refine the scope of what is to be accomplished during the 
signal timing process. Signal timing policies should establish answers to the following questions: 

• What should be improved? 

• What objectives or various user needs should be optimized? 

• What performance measures should be tested? 

• What standards must our policy follow? 

• What data should be collected to develop signal timing? 

• What should be measured after implementation? 

• What should be monitored as part of maintenance? 
 

Agencies should use their signal timing policies to guide the development, operation, and 
maintenance of their signal system.  

2.1.1 Policy Influence on Signal Timing  

The primary goal of traffic signal timing is to maintain the safe and efficient transfer of right-of-way 
between conflicting streams of users; however, a safe and efficient system varies within each 
community’s context as described previously. Thus, local, regional, state, and federal policies must be 
considered to determine a proper approach. These policies form the foundation from which performance 
measures are selected. These performance measures should be tracked through the signal timing 
process.  

Policy questions related to signal timing include determining: 

• Whether all types of users (transit, freight, emergency respondents, pedestrians, vehicles, 
bicycles, etc.) will be treated equally or prioritized at the signalized intersection; 

• How frequently will signal timing plans be reviewed and updated; 

• How approaches with differing street classifications should be treated;  

• Whether there will be preferential treatment for certain movements beyond the definition of the 
coordinated phase (will the coordination timing plan clear all queues during each cycle for left 
turns and side street through movements); 

• How intersections with deficient capacity will be treated; and 

• What measures will be used to determine whether the timing plan is effective (vehicle stops, 
network delay, arterial travel speed, estimated person delay, estimated fuel consumption, transit 
speed, etc.) and how will they be collected. 

Signal timing by its nature is the assignment of right-of-way to competing directions and travel modes. 
Signal timing often requires trade-offs between various modes at an intersection, such as vehicles versus 
pedestrians and bicycles. These tradeoffs could result in competing ideas, such as safe pedestrian 
crossing times versus maximizing automobile capacity.  

For every action, there are following reactions, and these types of trade-offs with 
signal timing should be made clear in the mind of decisionmakers in order to 
ensure signal timing policy is developed within the correct context. Examples of 
these trade-offs can be seen in the following portion of this section.  

Policies help define the objectives for signal timing plans. User expectations for a street network are 
often the guiding principles for an agency’s policies. There are many types of users, including rail, 
pedestrian, bicyclists, transit, emergency vehicles, and automobiles; however, it is the prioritization of 
these users on a facility that should reflect an understanding of agency policy and, in turn, provide signal 
timing objectives. Traditionally, rail is given the highest priority due to its greater momentum and limited 
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braking characteristics relative to other modes of travel. This is seen when there is a rail crossing and all 
movements are preempted in deference to the rail movement when a train is approaching. Other priority 
considerations include preemption or priority service for emergency vehicles (preemption overrides 
normal phasing sequence and coordination; priority service does not). An agency can provide emergency 
vehicles with devices that give them preference (preemption or priority) when needed. An agency can 
provide signal priority to transit vehicles to facilitate higher mobility (a bus can transport more people than 
an automobile) while being less disruptive to other system users. Details regarding signal preemption, 
priority, and other advanced signal timing topics are covered in Chapter 9.  

Each of the signal timing policies and expectations may vary based on the users, roadway facilities, 
and mode split. For example, the user expectations and objectives for a downtown core are different from 
those in a suburban setting. Within the Central Business District (CBD) of a medium or large city there are 
many users to consider. There are typically a higher percentage of pedestrians and transit vehicles in this 
setting and, as a result, the signal timing should reflect those users. Outside the CBD, the focus may 
change to one of maximizing mobility for various users. On a major arterial, for example, the focus may 
be on a policy of decreasing travel times, number of stops, and delays for users on the major street while 
accommodating transit and emergency vehicles.  

CBD environments require substantially different timing strategies than high-speed arterials. No 
single policy is correct for all situations. Each policy is site-specific and based on agency policy. It is often 
difficult to have a policy that completely satisfies all interested parties, as some policies inherently shift 
priorities from one user group to another. Regardless, the traffic engineer should ensure that the 
measures of effectiveness used to evaluate a system’s performance are appropriate for the policy being 
implemented. In addition, the traffic engineer is often best served by using a tool which can analyze the 
desired measures of effectiveness for optimization and evaluation. A signal timing tool that only optimizes 
for vehicles may need to be adjusted to the unique requirements of transit which are not reflected in many 
traditional signal optimization packages. 

Current local and state agency signal timing policy ranges from very well-defined and well-
implemented to non-existent. Based on a review of state and local agency signal timing policies, Table 2-
1 shows some generalized signal timing strategies and examples of applicable signal timing policies that 
would apply on a case by case basis. 

 Table 2-1 Signal Timing Strategies, Settings, and Policy Examples 
Transportation 

Policy Setting Signal Timing Strategy 

Pedestrian/Bicycle-
Focused 

Downtowns, Schools, 
Universities, Dense Multi-Use 
Development, Parks, or any 
location with high 
pedestrian/bicycle traffic. 

Shorter cycle lengths to reduce wait times 

Extended Pedestrian crossing timing 

Bicycle/Pedestrian Detection 

Exclusive Pedestrian Phasing 

Leading Pedestrian Interval 

Transit-Focused Transit-corridors, along transit 
routes, near transit stations or 
crossings. 

Signal preemption for high importance 
transit modes (i.e. rail) 

Signal priority for strategic transit modes 
and routes 

Signal coordination based on transit 
vehicle speeds 

Extended Pedestrian crossing timing 

Exclusive Pedestrian Phasing 

Leading Pedestrian Interval 
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Emergency Vehicle-
Focused 

Key roadways and routes to 
and from hospitals, fire 
stations, and police stations. 

Signal preemption for high importance 
vehicles  

Automobile-Focused / 
Freight-Focused 

Locations with high automobile 
or truck/freight traffic, facilities 
of regional importance, freight 
corridors, ports, or intermodal 
sites. 

Avoid cycle failure (i.e. queued vehicles 
not making it through the intersection on a 
single green indication) 

Maintain progression on coordinated 
systems as best as possible to avoid 
unnecessary stops and delay 

Use appropriate cycle lengths (Shorter 
cycle lengths will typically result in less 
delay, but increased “lost time” (time lost in 
vehicle deceleration, driver reaction time, 
and vehicle acceleration), while longer 
cycle lengths may result in more delay, 
less “lost time”, and potentially more 
vehicle throughput depending on traffic 
demand)  

Ensure appropriate pedestrian signal 
timing to allow safe multimodal use of the 
roadway network. 

Low-Volume Locations 
or Periods 

Locations with low traffic 
volumes or during off-peak 
travel periods 

Ensure efficient signal timing operations 
(avoid unnecessary stops and delays) 

Consider flashing operation (yellow-red or 
red-red) if conditions allow 

Use appropriate resting state for the signal 
with no traffic demand (i.e. rest in red, rest 
in green and “walk” on major roadway) 

Allow skipping of unnecessary movements 
(i.e. uncalled left-turn phases) but assure it 
does not create “yellow trap” 

Use half, third, or quarter cycle lengths 
relative to other coordinated signalized 
intersections 

Allowing pedestrian actuations to 
temporarily lengthen a cycle length, 
removing an intersection out of 
coordination, if pedestrian and vehicular 
volumes are low. 

 

Each of these generalized signal timing policies reflects the priorities in a transportation system. 
These priorities should match the regional characteristics of travel in an area, as well as the roadway 
classification. 

2.1.2 Challenges to Signal Timing Policy Development 

 There are distinct challenges associated with interpreting policies and implementing them within 
traffic signal timing settings. Policies often provide agencies and individuals with considerable room for 
interpretation. In many cases, an agency’s established policies are not fully understood by the 
implementing staff, or the implementing staff may not recognize that policy is being established. This is 
further complicated by the public’s lack of understanding of the signal timing complexities. Implemented 
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signal timing settings that are consistent with the policies (either explicitly or by default) may be changed 
due to public response or complaint and the resultant changes may not be consistent with policy. A 
further challenge for the practitioner is that the policymaker may not appreciate the technical complexity 
and financial implications associated with the actual implementation of the strategy created to address a 
specific policy. For this reason, it is important to emphasize the relationship between transportation or 
signal timing policies to performance measures and funding. Details on both are presented later in this 
chapter. 

Many agencies do not have written policies, and there is a poor understanding of the relationship 
between the settings used in the field and their effects on operations. Historically, many traffic engineers 
have made decisions based on user expectations and complaints, which may not represent best practice 
or the agency’s policy. For example, an agency’s operations standard may dictate the minimum level of 
service (LOS) of a signalized intersection, which, in turn, determines the capacity and the size of the 
intersection to achieve this LOS. This policy may result in long pedestrian crossing times, yellows, and all-
reds, which can increase the cycle length for the intersection (assuming that pedestrians are present and 
will try to cross the wide street). The long cycle lengths increase the delay for pedestrians, which may 
reduce the compliance of pedestrians or increase mid-block crossings (to avoid the signal).  

Similar to best design practices, a context sensitive approach can be applied and can benefit signal 
timing. A context sensitive approach considers the environment of the traffic signal, the local policies, and 
the unintended consequences of potential changes as a result of the signal timing changes. 

Signal timing is also complicated because operators have no clear way to measure the ongoing 
operations of the entire traffic signal system. Traffic signal operation is an area that is more complicated 
than freeway operations, and it is difficult to identify effects of changes to the systems without the 
infrastructure to measure performance. Research related to arterial performance measurement is 
underway but has been limited in its application. An example of this is freeway management system 
maps that produce real-time speeds for traveler information. Recent research (NCHRP 3-79) identified 
that one challenge to producing similar maps for the arterial system is the complexity of measuring 
performance at each intersection. An additional challenge is the lack of infrastructure to communicate the 
information back to a location where it can be displayed.  

Despite these challenges, the development of signal timing policies that follow regional and local 
community transportation goals and objectives is a worthwhile undertaking.  

Development of signal timing policies should be a collaborative effort between 
regional partners and community stakeholders, crossing jurisdictional boundaries, 
with the service and safety of the customer in mind at all times. Signal timing 
policies should be clearly documented and thoroughly communicated within an 
agency to those who operate and maintain the signal system. 

2.1.3 Use of Standards 

Within all signal timing policies, there should be implicit or explicit direction to use the latest national 
and local standards available relating to signal timing and operations along with good engineering 
judgement. Specific standards applying to signal timing can be found in the Manual on Uniform Traffic 
Control Devices (MUTCD) as adopted by a given state, or other local adopted standards which may 
follow the uniform vehicle code model. 

Standards specific to signal timing in the MUTCD relate to establishing safe and consistent 
pedestrian crossing times, vehicle clearance intervals, and signal indications, but don’t specifically 
standardize timing parameters. The MUTCD does provide guidance and options for timing parameters of 
walk, flashing don’t walk, solid don’t walk, yellow, and all-red indications, which in name are not 
standards, but many states have interpreted guidance statements as having the force and effect of a 
standard, thus being mandatory. Still all standards, recommended practices, guidelines, and options 
should be applied with good engineering judgment. Public safety regarding signal timing and signal timing 
policy should be of the utmost importance. 
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A state supplement to the MUTCD may be relevant to provide boundary conditions for the signal 
timing. Many states produce Manuals of Traffic Signal Design, which may also identify guidance for signal 
timing settings.  

A state’s Vehicle Code can also affect vehicle clearance interval timing. A good example of this is 
laws related to change intervals which vary depending on whether a restrictive or permissive yellow law is 
in place. Details on how this affects yellow clearance timing can be found in Chapter 5. 

It is important to note that this document is not intended to take precedence over federal, state, or 
local policies. The Signal Timing Manual provides a comprehensive compilation of materials that should 
be considered when developing timing plans. 

2.2 SIGNAL TIMING PROCESS 
The signal timing environment has two components, the signal timing policy and the signal timing 
process. The signal timing policy should define how and with what form the signal timing process is 
implemented, and thus should actually include the signal timing process. As described in the previous 
section, signal timing policies should be used to refine the signal timing process 
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Figure 2-2 Signal Timing Environment 

 
The process for developing a signal timing process is often well established in many agencies and 

focused on the mechanics of optimization. In many cases, the process may be affected by the time, 
funding, or resources available. Signal timing is a process that uses distinct procedures and one 
interrelated procedure. Data management, signal timing optimization, field deployment, and performance 
evaluation are the four quadrant procedures described in the FHWA report on Signal Timing Process, but 
to think beyond the specific activities we have added additional steps to focus the engineer or technician 
on other concepts that need to be considered. This expanded signal timing environment, shown 
graphically in Figure 2-2, provides a framework to achieve results consistent with overall regional and 
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agency policies. As shown in the figure, once the policies have been established, a signal timing process 
can be implemented, which is further described in Chapter 7. 

It is important to consider the context and variations within which the signal timing process can be 
applied, and the level to which specific policy plays. The signal timing process can occur at a basic, 
isolated intersection timing level or it can occur at a larger, area-wide or corridor-wide scale involving 
signal timing, a review of signal hardware and software, signal communication technology and a myriad of 
other signal system applications. The level and detail of policy confirmation/evaluation on a signal timing 
project is likely to be greater as the scope, size, or importance of the project increases. Table 2-2 shows 
examples of the difference between signal timing processes focused on a single intersection and a focus 
on regional signal timing. 

 

 Table 2-2 Signal Timing Process Examples 

Step 
Signal Timing 
Process Steps 

Single Intersection Field 
Adjustment Regional Signal Timing Optimization 

1 Project Scoping Typical maintenance is performed 
on a routine basis  

A detailed scope of work is developed and 
the effort is completed every one to five 
years 

2 Data Collection 
Phone call complaints may be the 
only step necessary, but could 
include other sources of data 

Turning movement counts, existing signal 
timing sheets, “before” travel time runs, 
signal timing policy, etc…  

3 Model 
Development Field observation Build signal timing model, typically using a 

software tool like Synchro or TRANSYT-7F. 

4 Implement New 
Timing Plans Change setting and observe Code signal controller with new timing plans 

and implement in the field 

5 Fine Tuning / 
Refinement 

Observe and call back person(s) 
who complained for feedback 

Observe and adjust/refine timing plans in 
the field 

6 
Evaluation / 
Performance 
Measurement 

Customer satisfaction; more 
complaints? 

Conduct “after” travel time and/or delay 
studies in the field. Compare measures of 
effectiveness in signal timing software such 
as Synchro. 

7 
Policy 
Confirmation/ 
Evaluation 

On-site observation Compare signal timing and traffic operations 
in the field to prescribed policy. 

8 Assessment/ 
Reporting Make change in timing in the office Develop documentation of adjustments and 

results of signal timing effort. 

 

Signal timing optimization at all levels, should ideally begin with a review of established policies to 
ensure compliance and consistency of the project scope with agency policy. As described in Table 2-2 
above, response to routine complaints and maintenance activity may not result in activity in each step of 
the process, but it is important to start with a framework that could be used during a comprehensive 
evaluation. Ultimately, consideration of policies must also be relevant to the specific requirements and 
location of each situation to consider a proper timing plan. 

2.2.1 Signal Timing Maintenance and Data Management 

The monitoring of signal timing operations and maintenance is included as the last step of the signal 
timing environment and can take place in a variety of ways. Proactive examples would be a signal timing 
policy for regular timing updates, field inspections, continual maintenance of signal systems, and 
communications to to identify issues as soon as possible. Reactive examples would be responding to 
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phone calls from the public or notification from outside sources. Where possible, a proactive approach to 
monitoring, maintenance, and the entire signal timing process is preferred.  

A proactive approach will provide the opportunity for reliable and efficient signal 
timing and systems operations, particularly in capacity-constrained corridors or 
regions. The importance of proactive maintenance, monitoring and updates should 
be made clear in the minds of decisionmakers. 

An important part of the maintenance of signal timing plans and the signal system is good, clear data 
management. Efficiency and cost-savings will be lost if there is not good documentation or recordkeeping 
of the process so that it can be recreated and/or followed when future signal timing efforts are needed or 
when a timing setting is called into question in court proceedings. Organized and simple data 
management is needed to organize the collected data, track changes in the controller, cabinet or other 
signal infrastructure, record maintenance efforts and implementations, etc. Ideally data management 
should be redundant in nature to avoid the loss of data in the future. This may take the form of hard copy 
notes or data in files or binders, as well as electronic copies stored via computer. A little effort to organize 
data and efforts related to the signal timing process will have large benefits in the future.  

2.2.2 Hardware and Software Considerations 

While the policy evaluation is undertaken, it is also important to complete an assessment of the 
hardware and software signal system capabilities and constraints. This effort will provide the agency with 
an understanding of how certain hardware and/or software capabilities and constraints might enhance or 
limit their ability to carry out a certain policy. For example, if transit vehicles are a priority in a system or 
corridor, transit signal priority may be a desired element within a signal timing policy. Yet transit signal 
priority is a relatively new technique that may require a jurisdiction(s) to upgrade their hardware and 
software signal controller capabilities to be able to operate transit signal priority and allow this policy to be 
carried out. Within the evaluation of signal timing policies, the agency needs to consider the tools and 
resources necessary to collect and evaluate relevant data for optimization and necessary to complete a 
policy evaluation.  

The age of signal equipment is typically related to hardware and software capabilities and constraints. 
As improved technology is introduced into the transportation industry, signal equipment capabilities 
increase, and constraints such as lack of memory to store timing plans and other problems decrease. In 
most cases, traffic controllers purchased today are contemporary electronics with central processors that 
provide sufficient capabilities for the operation of most strategies that can be developed. The Advanced 
Transportation Controller (ATC) standard (http://www.ite.org/standards/atc/) provides a hardware platform 
that anyone can provide software and thus affords opportunities to select from multiple vendors both 
hardware and software, allowing more upgrade opportunities without changing the hardware. In addition 
to the signal controller, the hardware at the intersection, the detection, and communication are important 
factors in the ability to effectively implement the policies described above. Examples of hardware and 
software constraints include: 

• Maximum number of signal timing plans (e.g. an older controller may only be able to store and 
operate 5 timing plans, while newer controllers can store and operate 20 plans or more); 

• How pedestrian crossing requirements will be accommodated in selecting the cycle length (with 
the primary risk being loss of coordination);  

• How planned transitions to and from coordination (e.g., preemptions, plan changes) will be 
handled;  

• How different types of users will be detected and accommodated; 

• Capability to implement preferential treatment (preemption or priority); 

• Ability of equipment to accommodate regional or corridor communication strategies (i.e. fiber, 
modem, radio, etc); and 

• The hardware and software uses of neighboring agencies and the partnership possibilities 
between them (i.e. cost-sharing). 
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2.2.3 Selection of Optimization Tools and Evaluation of Policies 

The data collected as a part of the signal timing process is entered into an optimization tool to 
evaluate the adjusted signal timing plan. Part of the evaluation should include a confirmation that signal 
timing policies are upheld by the new timing plans. There are a number of computer programs that can be 
used to generate signal timing plans. The FHWA recently published a report that describes the resources 
available in more detail (Traffic Analysis Toolbox, 
http://www.ops.fhwa.dot.gov/trafficanalysistools/toolbox.htm). The pertinent questions related to the 
process for optimization and use of the policy evaluation tool include: 

• Is the optimization tool capable of providing an interface that resembles the hardware and 
software and can it reasonably replicate the performance of the equipment? 

• Is the optimization tool capable of producing a plan that addresses the measures established 
within the evaluation criteria?  

• Is there an evaluation tool (other than the optimization tool, potentially simulation) needed to 
assess whether the timing plan has met the relevant policies? 

2.2.4 Other Policy Considerations 

Additional policy issues that are more detail oriented include: 

• The maximum allowable cycle length;  

• Whether the agency will allow lagging and leading left turns by intersection or variable by time of 
day;  

• Whether the agency will allow the skipping of left turn phases under low volume conditions; 

• Whether maximum green times will operate within the coordination plan;  

• Whether transit preferential policies such as transit signal priority will be implemented 
aggressively; 

• The number of signal timing plans (time of day plans) in operation per day to respond to 
fluctuating traffic demand; 

• Will coordination timing plans allow intersections to temporarily leave coordination to accomplish 
tasks (i.e. serve pedestrian calls); and 

• Whether coordination patterns will be selected by time-of-day or by real-time traffic data. 

Hardware and software options are becoming more complex relative to implementation of 
coordination plans, and it is important to understand that there are differences between signal timing 
plans produced by optimization tools in the office and the plans that are actually implemented in the traffic 
signal controller specific to a jurisdiction. In some cases, signal controller software requires a timing plan 
to provide sufficient time for pedestrians to cross the street for a coordination plan to take effect. While 
software programs have greatly reduced the effort required to install the controller parameters there is still 
a significant difference between field operations and the optimization packages. Some signal system 
vendors are integrating the ability to transfer signal timing and traffic volume data into optimization tools 
into their products. This further reduces the barrier between data collection, optimization, and 
implementation; however, this may come at the expense of an assessment of the timing policies and the 
flexibility of establishing the proper evaluation criteria. This integration might also limit the user to the 
particular program integrated into the product. 

2.3 PERFORMANCE MEASURES AND NATIONAL PERSPECTIVE IN SIGNAL TIMING 
Performance measures are the best way to gauge the effectiveness of signal timing policy and its 

application. Common performance measures related to signal timing include delay per person or vehicle, 
travel time, 50th-percentile and 95th-percentile queue lengths, and air quality or vehicle emissions 
measures. Presenting performance measures in a clear and understandable format is important to 
capturing the attention of policy-makers and decision-makers and reinforcing the importance of good 
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signal timing application within their community(s). Specifics on performance measures are presented in 
Chapter 3. 

2.3.1 National Traffic Signal Report Card 

The exposure of signal timing practice has greatly increased at the local, state, and federal levels 
after the release of the first National Traffic Signal Report card was first released by the National 
Transportation Operations Coalition (NTOC) in April 2005 and most recently in October 2007. The report 
card was an agency self-assessment based on the five core areas for agencies and decision makers to 
focus on when striving for excellence in traffic signal management: 

 Program Management – having “clearly defined goals with measureable objectives and 
specific milestones for achievement to hopefully resulting in improved operational 
performance, reliability, asset duration, and resource allocation.” 

 Traffic Monitoring and Data Collection – often underestimated in importance, “having 
specific, clear knowledge of conditions allows transportation professionals to be creative in 
signal timing solutions, by minimizing unknown variability.” 

 Routine Signal Timing Updates – “to keep pace with changing travel patterns, traffic signal 
timing should be actively monitored, reviewed, and updated at least every three years and 
possibly sooner depending on growth and changes in traffic patterns.” 

 Sound Maintenance Practices – “well-trained technicians are needed to properly maintain 
traffic signals and preserve the investment in hardware and timing updates.” 

 Appropriate Traffic Signal Hardware – “”to keep from using outdated equipment to operate 
the signal system, signal controllers (and potentially signal communication network) should 
be upgraded every 10 years, and possibly more frequently in high-growth areas that require 
more complex control.”  

The report card studies site numerous benefits in the form of reduced congestion, less vehicle 
emissions, and improved operational safety. These policies listed above are fairly universal best practice 
policy elements for urban and suburban environments, and many are applicable in rural environments. 
Establishing improved signal timing policies should lead to improved signal timing and signal operations 
resulting in improved report card grades. 

The NTOC 2005 and 2007 National Traffic Signal Report Card concluded that many agencies do not 
have documented policies on how signals are operated, nor is this information shared with employees. In 
addition, regular meetings with law enforcement and emergency service providers, and annual reviews of 
major roadways are rarely conducted (2). The report card indicated a strong need for improvement in all 
five categories on average for the 417 responding agencies, with an overall national grade of “D“ in the 
latest report card, up from a “D-“ national average in 2005.  

While the NTOC 2007 National Traffic Signal Report Card showed room for improvement nationally, a 
few agencies showed significant improvement. This improvement in general was characterized by (1) 
more effective management techniques, (2) a more thoughtful approach to resource allocation, (3) new or 
improved training for staff, and (4) improved communication between neighboring agencies and internal 
departments (i.e. engineering, technicians, and law enforcement), among others.  

Many of the improved agencies noted the 2005 National Traffic Signal Report Card provided them 
validation and numbers to back up requests for additional funding and resources for signal timing 
projects.  

“The agencies managing our traffic signal systems can and want to do better in the 
daily management of our systems, but this will be accomplished only through the 
support of local public sector leadership. Proactive traffic signal management, 
operation and maintenance are critical – our quality of life and the environment 
depend on it.” – 2007 NTOC National Traffic Signal Report Card 
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2.3.2 National Signal Timing Findings 

Good signal timing will contribute to the safe and efficient movement of goods and persons, not just 
automobiles, through a region’s transportation system. Unlike other transportation improvements, 
improved signal timing typically requires little or no infrastructure costs and produces a very high benefit 
to cost ratio by operating the existing system with greater efficiency and reduced congestion. The cost to 
retime and optimize a signalized intersection is approximately $2,500 to $3,100 per signal per update (3). 
Beyond signal timing optimization, establishing or improving signal coordination or updating signal 
software and hardware equipment can add further system benefit to the traveling public.  

The following are some specific examples of signal timing optimization and signal system 
improvement benefits experienced in various communities nationwide, as documented in the United 
States Department of Transportation’s Intelligent Transportation Systems for Traffic Signal Control, 
Deployment Benefits and Lessons Learned (3): 

• The Traffic Light Synchronization program in Texas demonstrated a benefit-cost ratio of 62:1, 
with reductions of 24.6 percent in delay, 9.1 percent in fuel consumption, and 14.2 percent in 
stops. 

• The Fuel Efficient Traffic Signal Management program in California demonstrated a benefit-
cost ratio of 17:1, with reductions of 14 percent in delay, 8 percent in fuel consumption, 13 
percent in stops, and 8 percent in travel time. 

• Improvements to an eleven-intersection arterial in Saint Augustine, Florida, showed 
reductions of 36 percent in arterial delay, 49 percent in arterial stops, and 10 percent in travel 
time, resulting in an annual fuel savings of 26,000 gallons and a cost savings of $1.1 million. 

• A project in Syracuse, New York, that connected intersections to a communications network 
produced reductions in travel time of up to 34 percent. Coordinated signal systems improve 
operational efficiency and can simplify the signal timing process. 

• In areas of rapidly changing or unpredictable traffic volumes, adaptive signal timing control 
may improve system performance by 5 to 30 percent, but should be applied with caution to 
intersections or corridors.  

• Spending less than 1 percent of the total expenditure on highway transportation would lead to 
a level of excellence in traffic signal operations.  It would be an investment with a 40:1 
benefit-cost ratio and would result in benefits of as much as $45 billion per year. This 
corresponds to a price of less than $3 per U.S. household resulting in savings of $100 per 
household per year. (2, 16) 

These national signal timing statistics are meant to show a glimpse of the potential signal timing 
optimization benefits that can result from either implicit or explicit signal timing policy applications. 
Communicating these types of benefits to policy-makers and decision-makers is likely one of the best 
ways to bring attention and funding to signal timing and ultimately, the development of solid signal timing 
policies.  

2.4 FUNDING CONSIDERATIONS 
This section discusses the various funding considerations and sources for a signal timing program. 

Potential funding sources can include federal funding, state-local arrangements, public-private 
partnerships, and direct agency funding sources. 

2.4.1 Direct Signal Timing Funding 

Direct agency funding has been the most common approach to funding improved signal timing plan 
development and plan implementation. Depending on the local, state, or federal level of agency, direct 
funding sources may include (4): 

• General Tax Fund (i.e. gas tax, license tax, property tax, sales tax); 

• Tolls; 
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• Bond Proceeds/Interest Income;  

• Federal Aid (i.e. CMAQ, Surface Transportation Program, SAFETEA-LU), and 

• Developer Mitigation Funds or Impact Fees. 

Funding for signal timing projects is available through federal or other sources. For federal funds, the 
project sponsor must communicate the need for the project with either the State department of 
transportation or local metropolitan planning organization to determine whether the program fits into the 
local long-range transporation plan and whether the current transportation improvement program can be 
amended, if necessary, to include the project. If not, the project sponsor must work with the local or state 
representatives to make sure the project makes it into the next transportation improvement program 
update cycle. The planning partners' responsibility is to help qualifying projects obtain funding from either 
federal or other sources (3). 

Federal funds through the FWHA Surface Transportation Program and CMAQ can be used for 
project, operations, and maintenance costs of a traffic control system and are eligible for Federal 
reimbursement through the Federal Aid Program.  This aid is distributed to project sponsors in the 
following ways (3): 

1. Transportation Improvement Program (TIP) and State Transportation Improvement Program (STIP). 
Program funds are typically available for capital improvement projects requiring new or reconstructed 
infrastructure. The installation of traffic signal systems and traffic control centers will usually be funded 
under these programs. These funds are programmed into the State's Long Range Transportation Plan 
(LRTP). 

2. Congestion Mitigation and Air Quality (CMAQ) Improvement Program funds. For projects located in air 
quality non-attainment and maintenance areas, CMAQ funds may be used for operating costs for a 3-year 
period as long as those systems measurably demonstrate reductions in air quality emissions or increased 
air quality benefits. Typical eligible operating costs include labor costs, administrative costs, costs of 
utilities and rent, and other costs associated with the continuous operation of the system, such as costs 
for system maintenance. 

2.4.2 Partnerships for Funding Signal Timing 

 Beyond a single agency funding source, partnerships play a key role in maximizing the benefits of 
signal timing projects and fund sharing between agencies. In some cases, public-private entities may 
offer investments to be used more efficiently and effectively. Good examples of this partnering for funding 
include Oakland County, Michigan’s Signal Retiming & Maintenance Agreements (5, 6) and the City of 
Portland, Oregon’s partnership with the Climate Trust (7). 

In 2002, the Road Commission for Oakland County, Michigan, began a program to retime nearly 900 
signals, in three manageable phases. These phases crossed jurisdictional and public-private boundaries, 
allowing for the best possible signal timing for the roadway network as a system. Partnerships in this 
Oakland County effort were formed between the Michigan Department of Transportation (MDOT); the 
Southeast Michigan Council of Governments (SEMCOG); Wayne County; the Road Commission of 
Macomb County; the cities of Ferndale, Pontiac, and Royal Oak; and regional consulting engineers. 
Notable reductions in delay, emissions, and improved travel times were the greatest user benefits 
measured through this signal timing and implementation partnership, which benefits all agencies involved. 
Funding for this signal timing effort came through a cost-sharing effort between MDOT CMAQ funds (1/3 
of costs) and SEMCOG CMAQ funds (2/3 of costs). 

The City of Portland, Oregon’s funding partnership with the Climate Trust is another example of 
partnering with multiple agencies to achieve a mutually beneficial goal of retiming 170 metro-area traffic 
signals. The partnership included the Climate Trust, a non-profit organization to support climate change 
solutions to offset greenhouse gases, because of their vested interest in the environmental improvements 
associated with good signal timing; the various agency partners (City of Portland, Washington County, 
and the Oregon Department of Transportation) have a vested interest in improving the efficiency of their 
roadway systems through signal retiming. A shortfall of available public funds to support signal retiming 
and implementation led to a partnership with the Climate Trust to make use of their available carbon 
dioxide offset funding in this signal retiming effort.  
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According to the Chicago Area Transportation Study website (8), their CMAQ program finances three 
types of traffic flow improvements—bottleneck elimination, intersection improvements, and signal 
interconnection—that all impact signal timing plans, but do not directly fund signal timing plan 
development. Signal timing improvements could qualify as “other projects” for CMAQ funding because 
improved signal timing reduces stops and idling traffic in a network, which results in emission reductions 
that could be estimated.  

A unique signal timing partnership offer is available in the San Francisco Bay Area through the 
Metropolitan Transportation Commission’s (MTC) Regional Signal Timing Program. This program invites 
local cities and counties to apply for “assistance from MTC's consultants for development and 
implementation of new time-of-day traffic signal coordination plans for weekday peak periods. The budget 
is $1.5 million in federal funds, with which about 650 traffic signals may be retimed. MTC will provide the 
local matching funds. In previous cycles, all applications that met eligibility requirements were funded. 
Other public agencies, such as congestion management agencies or transit agencies, are also eligible to 
apply if authorized to act on behalf of the agencies that operate traffic signals within the project limits (9).”  

Places to start for securing funding for signal timing projects could be through a local MPO planning 
office.  Traffic signal retiming projects might be added to their Long Range Transportation Plan (LRTP) as 
well as their more immediate Transportation Improvement program (TIP).  For locations outside of MPO 
areas you can check with your local state DOT office to possibly add this work to their transportation 
plan.. For more information on federal level funding, contact the State FHWA Division Office. Reaching 
out to regional partners, as shown in the examples above, can be a great step towards securing funding 
for signal timing projects that can be mutually beneficial (3).  

2.5 EXAMPLES OF PROGRAMS  
The following section provides several examples of various signal timing policy applications 

corresponding to the array of modal objectives.  

City of Denver, Colorado. The fundamental part of the Traffic Signal System Improvement Program 
(TSSIP) is development of new signal timing plans at a regional level in a three- to five-year cycle for 
major corridors and for all capital projects implemented (including miscellaneous signal equipment 
purchases). Since 1994, across 14 operating agencies in the region, the programming of TSSIP projects 
has been completed with regional cooperation and consideration for equitable distribution of resources 
from federal, state, and regional entities. Because the TSSIP is funded with federal Congestion Mitigation 
Air Quality funds, the benefits of every project must be measured and reported. The workgroup also 
targeted some additional funds for selectively developing timing plans that address weekend traffic 
patterns. Specific criteria would be developed to guide the selection of which weekend timing plans the 
TSSIP would prepare. Development and evaluation of timing plans for traffic-responsive control and 
incident management test bed activities are also included in this activity, as is assessment of the transit 
signal priority projects. (15) 

City of Philadelphia, Pennsylvania. The City currently has informal agreements with two 
neighboring townships, Upper Darby and Springfield, to provide arterial signal coordination across 
jurisdictional boundaries, which results in improved operations for all users. (14) 

City of Portland, Oregon. The City of Portland incorporates many travel modes within their signal 
systems. The expectations vary based on the surrounding areas and type of users. Within the downtown 
core, mobility for pedestrians, buses, bicycle, and train modes are the main focus. The coordinated 
system allows the transit modes to travel with higher priority than automobiles. The signals are timed to 
keep travel speeds relatively low. The low speeds and short cycle lengths allow a safer environment for 
pedestrians. Outside of the downtown core area, the coordinated system changes the focus to allow 
higher mobility for autos while still accommodating transit, emergency vehicles, bicycle, and pedestrian 
users. Transit signal priority is implemented along a majority of bus routes and emergency pre-emption is 
installed at all signalized intersections. Bicyclists are often provided with bike lanes in the streets and at 
some locations a bicycle signal is installed to provide them with additional mobility. Pedestrians are also 
considered within the signal system with pedestrian recall parameters. The networks set the coordination 
reference point at the beginning of the “Flashing Don’t Walk” time to ensure sufficient pedestrian service 
on the coordinated phases and to provide a “rest in Walk” operation that benefits pedestrians. In addition, 
an exclusive pedestrian phase is provided at high pedestrian areas.  

2-15 



City of San Francisco, California. The Bicycle Advisory Committee in San Francisco, California, 
has brought forth several unique signal timing policy suggestions to aid bicyclists. Because effective 
signal timing can improve traffic flows and reduce stops and delay, for bicycles, the Bicycle Advisory 
Committee recommends that the City consider “timing the signals along bike routes for bicycle speeds of 
approximately 12 to 15 miles per hour.” In addition, minimum green times and red clearance intervals 
should take the bicyclist into consideration because bicyclists need more start-up time to get through an 
intersection. They are recommending that the City actuate signal timing to include “at least 8 seconds” of 
minimum green time and more if the grade is uphill. Along major thoroughfares, particularly with widths 
greater than 75 feet, they say “red clearance intervals should be provided to allow time for the bicyclist to 
clear the intersection before cross-traffic is given a green indication.” (11, 12, 13) 

City of Vancouver, British Columbia. The Vancouver Transportation Plan contains a number of 
policies that are intended to improve the comfort and convenience of pedestrians in the City. One 
proposed measure is to reduce pedestrian wait times at traffic signals. Requests to reduce pedestrian 
wait times at signals were received during the public consultation phase of the Transportation Plan. The 
Transportation Plan recommended this reduction. The issue is also emerging through City Plan 
Community Visions. A related issue is that pedestrians (or cyclists) are more likely to ignore the signal if 
wait times are perceived as too long. This can cause pedestrians to cross against the light and result in a 
signal changing with no pedestrians (or cyclists) crossing. This also affects transit users trying to catch or 
transfer between buses, as buses are also less likely to wait for passengers if pedestrian/bike crossing 
wait times are perceived as too long. (10) 
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3.0 OPERATIONAL AND SAFETY ANALYSIS 

The purpose of this chapter is to summarize some of the common techniques used to assess the 
operational and safety performance of signal timing. The chapter begins by presenting an overview of 
the characteristics that affect signal timing, including both system and user characteristics. It then 
presents discussions of operational and safety performance measures and techniques to evaluate 
those performance measures. Finally, the chapter presents a discussion of signal warrants as 
presented in the Manual on Uniform Traffic Control Devices and how those warrants relate to signal 
timing. 

3.1 TERMINOLOGY 
This section identifies and describes basic terminology used within this chapter.  Additional terms 

can be found in the Glossary section of the Manual. 

Capacity 
The maximum rate at which vehicles can pass through the intersection under prevailing 
conditions.   

Clearance lost time 
The time, in seconds, between signal phases during which an intersection is not used by any 
critical movements. 

Control Delay  
The amount of additional travel time experienced by a user attributable to a control device.   

Critical movement analysis 
A simplified technique for estimating phasing needs and signal timing parameters. 

Delay 
The additional travel time experienced by a driver, passenger, or pedestrian. 

Effective green time  
The time during which a given traffic movement or set of movements may proceed; it is equal 
to the cycle length minus the effective red time.  

Flow rate  
The equivalent hourly rate at which vehicles, bicycles, or persons pass a point on a lane, 
roadway, or other trafficway, computed as the number of vehicles, bicycles, or persons 
passing the point, divided by the time interval (usually less than 1 hour) in which they pass; 
expressed as vehicles, bicycles, or persons per hour.  

Level of service 
A qualitative measure describing operational conditions within a traffic stream, based on 
service measures such as speed and travel time, freedom to maneuver, traffic interruptions, 
comfort, and convenience. 

Lost Time 
The portion of time at the beginning of each green period and a portion of each yellow 
change plus red clearance period that is not usable by vehicles. 

Saturation Flow Rate 
The equivalent hourly rate at which vehicles can traverse an intersection approach under 
prevailing conditions, assuming a constant green indication at all time and no loss time, in 
vehicles per hour or vehicles per hour per lane. 
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Start-up lost time  
The additional time, in seconds, consumed by the first few vehicles in a queue at a signalized 
intersection above and beyond the saturation headway due to the need to react to the 
initiation of the green phase and to accelerate to a steady flow condition. 

Stopped Delay  
A measurement of the aggregate sum of stopped vehicles for a particular time interval 
divided by the total entering volume for that movement. 

Total delay 
The sum of all components of delay for any lane group, including control delay, geometric 
delay, and incident delay. 

Travel Time (Average) 
The total elapsed time spent traversing a specified distance.  The average travel time 
represents an average of the runs for a particular link or corridor. 

3.2 CHARACTERISTICS AFFECTING SIGNAL TIMING 
Several overall features affect implementation of signal timing including: 

• Location 

• Transportation network characteristics 

• Intersection geometry 

• User characteristics 

The following sections further describe many characteristics and dynamic nature influencing 
signal timing. 

3.2.1 Location 

One of the primary factors affecting overall signal timing is the environment in which the 
intersection or intersections being timed are located. Urban environments are frequently 
characterized by lower speeds and higher degrees of congestion. In addition, urban environments are 
frequently characterized by higher pedestrian, cyclist, and transit use that often require priority in 
consideration. Rural environments, on the other hand, are typically higher speed but with lower levels 
of traffic volumes and fewer, if any, pedestrians, cyclists, and transit vehicles. As a result, signal 
timing for rural environments is typically dominated by efforts to safely manage high speed 
approaches; capacity is seldom a constraint. Suburban environments often present a challenging mix 
of these characteristics. Suburban environments are often characterized by high speeds during the 
off-peak periods and capacity-constrained conditions during the peak periods. This requires a careful 
consideration and balance of both safety aspects and operational efficiency.  

3.2.2 Transportation Network Characteristics 

The configuration of the transportation network under consideration can have a significant impact 
on the way its traffic signals are timed. Isolated intersections can be timed without the explicit 
consideration of other traffic signals, allowing the flexibility to either set or target cycle lengths that are 
optimal for the individual intersection. In these cases, good detection design often yields measurable 
operational and safety benefits. These are discussed further in Chapters 4 and 5. 

For intersections located along arterial streets, isolated operation can often be improved by 
considering coordination of the major street movements along the arterial. Common cycle lengths are 
often employed to facilitate this coordination. Coordinated operations are discussed in detail in 
Chapter 6. 

Signalized intersections are often located in grid networks with either crossing arterials or a series 
of intersecting streets with comparable function and traffic volumes. In these cases, the entire 
network is often timed together to ensure consistent behavior between intersections. Grid networks, 
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particularly downtown environments with short block spacing, are frequently timed using fixed settings 
and no detection. 

Within these categories, the spacing of signalized intersections affects how one times the signals. 
For signals that are sufficiently far apart that they can be considered independent of one another, 
intersections may be operated freely without need for or benefit from coordination, depending on the 
degree of congestion on the facility. For most arterial streets with signal spacing between 500 feet 
and 0.5 mile (2,640 feet), coordinated operation can often yield benefits by improving progression 
between signals. On arterials with higher speeds, it can be beneficial to coordinate signals spaced a 
mile (5,280 feet) apart or even longer. Signals that are located very close together (less than 500 
feet) often require settings that manage queues rather than progression as the dominant policy. It 
may also be beneficial to operate two intersections with very close spacing with a single controller. 

3.2.3 Intersection Geometry 

The overall geometry of an intersection determines its ability to efficiently and safely serve user 
demand. Pedestrians are often crossing lanes of traffic, whereas transit, bicycles, and vehicular traffic 
are using the travel lanes provided at the intersection. The number of lanes provided for each 
approach has a significant impact on the capacity of the intersection and, therefore, the ability for 
signal timing to efficiently serve demand. For example, a movement served by two lanes rather than 
one has a higher capacity and thus requires less green time to serve demand. However, increasing 
the number of lanes on a particular leg of the intersection also increases the minimum pedestrian 
crossing time across that leg, which by increasing clearance times will offset some of the increase in 
capacity.  

Subtle details of intersection geometry have a significant influence on signal timing. The size and 
geometry of the intersection, coupled with the speed of approaching vehicles and walking 
pedestrians, affect vehicular and pedestrian clearance intervals, which in turn have an effect on the 
efficiency of the intersection’s operation. For example, the skew of an intersection (the angle at which 
two roadways intersect) influences the length of crosswalks and thus pedestrian clearance time. The 
crosswalk length for an intersection at right angles (90 degrees) with a crosswalk length of 61 feet 
can extend to 76 feet if the intersection is skewed to 60 degrees, as shown in Figure 3-1 below. If a 
pedestrian walking speed of 4.0 ft/s, for example, is used for pedestrian clearance interval timing, the 
skew increases the pedestrian clearance interval from 16 seconds to 19 seconds; for a pedestrian 
walking speed of 3.5 ft/s, the clearance interval increases from 18 seconds to 22 seconds. Reverse 
effects can be seen when smaller curb radii and/or curb extensions are used to shorten pedestrian 
crosswalks, thus reducing pedestrian clearance time requirements (1). Although curb extensions can 
shorten pedestrian crossing times, the resulting narrow width may restrict the ability for through 
vehicles in shared lanes to bypass right-turning vehicles that are waiting for pedestrians or left-turning 
vehicles waiting for gaps in opposing traffic. 

Regardless of the angle of skew, care should be taken to ensure that good visibility of the signal 
heads is maintained for approaching vehicles. 
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Figure 3-1 Effect of intersection skew on signalized intersection width 
 

 
 (a) Intersection skew at 90 degrees. 

 

 
(b) Intersection skew at 75 degrees 

 

 
(c) Intersection skew at 60 degrees. 

Source: Figure 15, FHWA Signalized Intersections: Informational Guide 
 

3.2.4 User Characteristics 

User characteristics clearly influence the effectiveness of signal timing and should be accounted 
for early in the planning and analysis process. Some of the important factors include the following: 

• Mix of users: The mix of users at an intersection has a significant influence on signal 
timing. Pedestrians with slower walking speeds, persons using wheelchairs, and 
pedestrians with visual impairments need more time to cross the street; pedestrian 
walk times and clearance intervals need to be adjusted accordingly. High bicycle use 
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may benefit from special bicycle detection and associated bicycle minimum green 
timing. Emergency vehicle and/or transit use may justify the use of preemption and/or 
priority. Truck traffic requires accounting for reduced performance (longer acceleration 
and deceleration times) and larger size of heavy vehicles. 

• User demand versus measured volume: Traffic demand represents the arrival pattern 
of vehicles at an intersection (or the system, if one considers a group of intersections 
together), while traffic volume is the measured departure rate from the intersection. If 
more vehicles arrive for a movement than can be served, the movement is considered 
to be operating over capacity (oversaturated). However, unless the analyst has 
measured demand arriving at the intersection through either queue observation or 
through measurement of departure rates from an upstream undersaturated 
intersection, the true demand at an intersection may be unknown. This can cause 
problems when developing signal timing plans for a given intersection, as one may 
add time to a given movement, only to have it used up by the latent demand for that 
movement. Traffic volume at an intersection may also be less than the traffic demand 
due to an overcapacity condition at an upstream signal that “starves” demand at the 
subject intersection. These effects are often best analyzed using microsimulation. 

3.3 CAPACITY AND CRITICAL MOVEMENT ANALYSIS 
An important principle behind effective signal timing is a basic understanding of how signal timing 

affects the capacity of the intersection. Capacity is discussed in detail in the Highway Capacity 
Manual (2), but often only the basic elements are particularly relevant to practical signal timing 
implementation. This section presents a discussion of the operation of a signalized intersection 
movement, the definition of capacity and its component elements, and a discussion of techniques to 
estimate capacity. 

3.3.1 Basic Operational Principles 

The basic operation of vehicular movement through a signalized intersection is presented in 
Figure 3-2 below. The signal display is presented on the horizontal axis, the instantaneous flow of 
vehicles on the vertical axis. During the time while the movement is receiving a red indication, 
vehicles arrive and form a queue, and there is no flow. Upon receiving a green indication, it takes a 
few seconds for the driver of the first vehicle to recognize that the signal has turned green and to get 
the vehicle in motion. The next few vehicles also take some time to accelerate. This is defined as the 
start-up lost time or start-up delay and is commonly assumed to be approximately 2 seconds. After 
approximately the fourth vehicle in the queue, the flow rate tends to stabilize at the maximum flow 
rate that the conditions will allow, known as the saturation flow rate. This is generally sustained until 
the last vehicle in the queue departs the intersection. Upon termination of the green indication, some 
vehicles continue to pass through the intersection during the yellow change interval; this is known as 
yellow extension. The usable amount of green time, that is, the duration of time between the end of 
the start-up delay and the end of the yellow extension, is referred to as the effective green time for the 
movement. The unused portion of the yellow change interval and red clearance interval is called 
clearance lost time. 
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Figure 3-2 Typical flow rates at a signalized movement. 
 

 

 

3.3.2 Saturation Flow Rate 

The saturation flow rate, s, is an important parameter for estimating the performance of a 
particular movement. Saturation flow rate is simply the headway in seconds between vehicles moving 
from a queued condition, divided into 3600 seconds per hour. For example, vehicles departing from a 
queue with an average headway of 2.2 seconds have a saturation flow rate of 3600 / 2.2 = 1636 
vehicles per hour per lane. Saturation flow rate for a lane group is a direct function of vehicle speed 
and separation distance.  These are in turn functions of a variety of parameters, including the number 
and width of lanes, lane use (e.g., exclusive versus shared lane use, aggregated in the HCM as lane 
groups), grades, and factors that constrain vehicle movement such as presence or absence of 
conflicting vehicle and/or pedestrian traffic, on-street parking, and bus movements. As a result, 
saturation flow rates vary by movement, time, and location and commonly range from 1,500 to 2,000 
passenger cars per hour per lane (2). The HCM provides a series of detailed techniques for 
estimating and measuring saturation flow rate. It should be noted that this is significantly different 
than the ideal saturation flow rate, which is typically assumed to be 1,900 passenger cars per hour 
per lane. 

The ideal saturation flow rate may not be achieved (observed) or sustained during each signal 
cycle. There are numerous situations where actual flow rates will not reach the average saturation 
flow rate on an approach including situations where demand is not able to reach the stop bar, queues 
are less than five vehicles in a lane, or during cycles with a high proportion of heavy vehicles. To 
achieve optimal efficiency and maximize vehicular throughput at the signalized intersection, traffic 
flow must be sustained at or near saturation flow rate on each approach. In most HCM analyses, the 
value of saturation flow rate is a constant based on the parameters input by the user, but in reality, 
this is a value that varies depending on the cycle by cycle variation of situations and users. 

The HCM provides a standardized technique for measuring saturation flow rate. It is based on 
measuring the headway between vehicles departing from the stop bar, limited to those vehicles 
between the fourth position in the queue (to minimize the effect of startup lost time) and the end of the 
queue. The detailed procedure can be found in Chapter 16 of the HCM. For signal timing work, it is 
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often not necessary to place heavy emphasis on this parameter due to the high degree of fluctuation 
in this parameter from cycle to cycle. 

3.3.3 Lost Time 

As noted in the previous section, a portion of the beginning of each green period and a portion of 
each yellow change plus red clearance period is not usable by vehicles. The sum of these two 
periods comprises the lost time (or loss time) for the phase. This value is used in estimating the 
overall capacity of the intersection by deducting the sum of the lost times for each of the critical 
movements from the overall cycle length. The HCM defines a default value of 4 seconds per phase 
for total lost time (the sum of start-up lost time and clearance lost time). 

The resulting effective green time can therefore be defined as follows in Equation 3-1: 

   (3-1) )( 21 llRYGg +−++=

where g is the effective green time, G is the actual green interval, Y is the actual yellow change 
interval, R is the actual red clearance interval, l1 is the start-up lost time, and l2 is the clearance lost 
time (all values in seconds). 

3.3.4 Capacity 

At signalized intersections, capacity for a particular movement is defined by two elements: the 
maximum rate at which vehicles can pass through a given point in an hour under prevailing conditions 
(known as saturation flow rate), and the ratio of time during which vehicles may enter the intersection. 
These are shown in Equation 3-2 (2). 

⎟
⎠
⎞

⎜
⎝
⎛=

C
gsc   (3-2) 

where c is the capacity, s is the saturation flow rate of the lane group in vehicles per hour, g is the 
effective green time for the movement in seconds, and C is the cycle length in seconds. Capacity is 
shown graphically in Figure 3-3 as the area bounded by saturation flow rate and effective green time, 
and volume is shown as the area under the flow rate curve. 
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Figure 3-3 Illustration of volume and capacity of a signalized movement 
 

 
 

For the purposes of signal timing, the factors within a practitioner’s control that directly influence 
capacity are somewhat limited. In most cases, the number, width, and assignment of lanes are fixed, 
as are grades and the presence of on-street parking and bus movements. The practitioner has some 
control over the effect of conflicting vehicle and/or pedestrian traffic through the use of permissive 
versus protected left-turn and right-turn phasing and/or exclusive pedestrian phases. For signal timing 
purposes, the most readily accessible parameter is the effective green time for a particular 
movement. 

3.3.5 Volume-to-Capacity Ratio  

The volume-to-capacity ratio, also known as the v/c ratio or the degree of saturation, is calculated 
for each movement using Equation 3-3: 

sg
vC

C
gs

vcv =
⎟
⎠
⎞

⎜
⎝
⎛

=/ ,  (3-3) 

where v is the demand volume of the subject movement in vehicles per hour and the remaining 
variables are as defined previously. Using the graphical tool from the previous section, the volume-to-
capacity ratio represents the proportion of the area defining capacity that is occupied by volume. 

Movements or lane groups with volume-to-capacity ratios less than 0.85 are considered 
undersaturated and typically have sufficient capacity and stable operations. For movements or lane 
groups with a volume-to-capacity ratio of 0.85 to 1.00, traffic flow becomes less stable due to natural 
cycle-to-cycle variations in traffic flow. The closer a movement is to capacity, the more likely that a 
natural fluctuation in traffic flow (higher demand, large truck, timid driver, etc.) may cause the demand 
during the cycle to exceed the green time for that cycle. The result would be a queue that is carried 
over to the next cycle, even though the overall demand over the analysis period is below capacity. In 
cases where the projected volume-to-capacity ratios exceed 1.00 (demand exceeding capacity) over 
the entire analysis period, queues of vehicles not served by the signal each cycle are likely to 
accumulate and either affect adjacent intersections or cause shifts in demand patterns. These 
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conditions are described as oversaturated and require significantly different approaches for signal 
timing. 

3.3.6 Critical Movement Analysis 

A variety of analysis procedures, ranging from simple to complex, are used to evaluate signalized 
intersection performance. These are summarized in Figure 3-4. 

Critical movement analysis is a simplified technique that has broad application for estimating 
phasing needs and signal timing parameters. The most current implementation of the critical 
movement analysis method is provided in Chapter 10 of the HCM 2000 as the Quick Estimation 
Method. This method allows an analyst to identify the critical movements at an intersection; estimate 
whether the intersection is operating below, near, at, or over capacity; and approximate the amount of 
green time needed for each critical movement. The method is generally simple enough to be 
conducted by hand, although some of the more complicated refinements are aided considerably with 
the use of a simple spreadsheet. In many cases, the lack of precision of future volume forecasts or 
estimated trip generation of land uses minimizes the precision of more complicated analysis methods; 
in these cases, critical movement analysis is often as precise as one can achieve.  

Critical movement analysis is based on the following fundamental basic principle: 

The amount of time in an hour is fixed, as is the fact that two vehicles (or a 
vehicle and a pedestrian) cannot safely occupy the same space at the same 
time. Critical movement analysis identifies the set of movements that cannot 
time concurrently and require the most time to serve demand. 

Critical movement analysis is an effective tool to quickly estimate green times for various 
movements at an intersection and to estimate its overall performance in terms of volume-to-capacity 
ratios. Appendix A provides step-by-step details for using the procedure, including a sample 
worksheet. The basic procedure for conducting a critical movement analysis/quick-estimation method 
analysis is given in Figure 3-5 and Table 3-1. Table 3-2 identifies the various thresholds 
recommended in the HCM for volume-to-capacity ratios. 
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Figure 3-4 Overview of signalized intersection analysis methods 
 

 
Source: (1) 

 

A simple example is provided in Example 3-1 to illustrate the basic elements of the procedure. 

Application 
From a signal timing perspective, the volume-to-capacity ratio is an important measure that 

defines how well progression can be achieved. For coordinated through movements, a volume-to-
capacity ratio approaching capacity means that virtually all vehicles departing on green will be 
departing from a queue at the saturation flow rate. This type of operation is efficient in terms of 
maximizing the throughput of an intersection, but it greatly limits the ability to have vehicles arrive and 
depart on green without stopping (a typically desirable objective of progression). Therefore, if one 
desires to minimize stops for through vehicles along an arterial, the volume-to-capacity ratio for 
through movements must be kept sufficiently low (this has not be documented, but it is likely to be 
around 0.85 or lower) to allow a portion of the through movement’s green time to remain 
undersaturated. If overall volume levels are too high to permit a large enough undersaturated period 
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for the coordinated through movements to pass through without stopping, the objective of progression 
through the intersection without stopping may be infeasible. 

Limitations 
The critical movement analysis procedure is simple and cannot accommodate all real-world 

conditions encountered when developing signal timing. These include vehicle and pedestrian 
minimum times (as noted above), assumed constant values of capacity for each lane, and complex 
signal phasing. For these conditions, more advanced analysis methods are likely to be more 
accurate. However, the critical movement analysis procedure is still often a good first approximation. 

Figure 3-5 Graphical summary of Critical Movement Analysis/Quick Estimation Method (1) 
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Table 3-1  Steps of the Quick Estimation Method (QEM) (2, with HCM corrections) 
Step Process 

1 Identify movements to be served and assign hourly traffic volumes per lane. This is the only site-specific 
data that must be provided. The hourly traffic volumes are usually adjusted to represent the peak 15-minute 
period. The number of lanes must be known to compute the hourly volumes per lane. 
 

2 Arrange the movements into a desired sequence of phases that can be run concurrently based on the 
design of the signal. This is based in part on the treatment of each left turn (protected, permissive, etc.).  
 

3 Determine the critical volume per lane that must be accommodated during each interval. This step 
determines which movements are critical. The critical movement volume determines the amount of time that 
must be assigned to the phase on each signal cycle. 
 

4 Sum the critical phase volumes to determine the overall critical volume that must be accommodated by the 
intersection. This is a simple mathematical step that produces an estimate of how much traffic the 
intersection needs to accommodate. 
 

5 Determine the maximum critical volume that the intersection can accommodate: This represents the overall 
intersection capacity. The HCM QEM suggests 1,530 vphpl for most purposes. 
 

6 Determine the critical volume-to-capacity ratio, which is computed by dividing the overall critical volume by 
the overall intersection capacity, after adjusting the intersection capacity to account for time lost due to 
starting and stopping traffic on each cycle. The lost time will be a function of the cycle length and the 
number of protected left turns. 
 

7 Determine the intersection status from the critical volume-to-capacity ratio. The status thresholds are given 
in Table 3-2. 

 

Table 3-2 Volume-to-capacity ratio threshold descriptions for the Quick Estimation Method 
Critical Volume-to-

Capacity Ratio Assessment 

< 0.85 Intersection is operating under capacity. Excessive delays are not 
experienced. 
 

0.85–0.95 Intersection is operating near its capacity. Higher delays may be expected, 
but continuously increasing queues should not occur. 
 

0.95–1.00 Unstable flow results in a wide range of delay. Intersection improvements 
will be required soon to avoid excessive delays. 
 

> 1.00 The demand exceeds the available capacity of the intersection. Excessive 
delays and queuing are anticipated. 

Source: (2) 
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Example 3-1: Critical Movement Analysis 
Step 1: 
Lane configuration, phasing, and volumes: 

 
Steps 2, 3, and 4: 
Check east-west critical lane volumes to determine the pair of consecutive movements that requires the most time: 
EB LT + WB TH/RT = 120 + (360 + 110)/2 = 120 + 235 = 355 
WB LT + EB TH/RT = 170 + (690 + 280)/2 = 170 + 485 = 655 ← critical 
 
Check north-south critical lane volumes to determine the pair of consecutive movements that requires the most time: 
NB LT + SB TH/RT = 80 + 400 = 480 ← critical 
SB LT + NB TH/RT = 120 + 210 = 330 
 
Identify critical movements: WB LT, EB TH/RT, NB LT, SB TH/RT 
Determine the sum of critical movement volumes: CS = 655 + 480 = 1135  
 
Steps 5, 6, and 7: 
Determine the reference sum (capacity): RS = 1530 × PHF × fa = 1530 × 1.00 × 1.00 = 1530 
PHF = Peak Hour Factor (assumed to be 1.00 in this example) 
Adjustment factor for area type, fa = 0.90 for Central Business District, 1.00 for other (assumed to be “other” in this example) 
Identify cycle length: C = 120 s (assumed) 
Determine total lost time: L = 4 critical phases × 4 s per phase = 16 s 
 
Calculate and assess intersection volume-to-capacity ratio: 

86.0

120
1611530

1135
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=
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⎠
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⎜
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Additional calculations: 
Estimate splits and green times for critical movements, assuming equal volume-to-capacity ratio for all movements: 
 

Critical Movement Volume 
(veh/hr/ln) 

Proportion 
Split 

Average Split 
Time (s) 

Assumed 
Y + R (s) 

Average Green 
Time (s)* 

WB LT   170   15%   18   4   14 
EB TH/RT   485   43%   52   4   48 
NB LT     80     7%     8   4       4** 
SB TH/RT   400   35%   42   4   38 
Total 1135 100% 120 16 104 
 
* Actual field settings for green times and splits may need to be larger, as these reflect average 
conditions during the time period being analyzed 
** Calculated green time may violate minimum green for phase and need adjustment. All green times 
need to be checked for compatibility with minimum vehicle and pedestrian timing requirements. 

Additional calculations as noted in the table, the splits calculated according to this method do not account for vehicle or 
pedestrian minimum times and may need to be adjusted accordingly.  In addition, given that the split times reflect average 
conditions over the time period being analyzed, maximum green times and/or force-offs may need to be set higher to 
accommodate cycle-to-cycle fluctuations in traffic demand. Changes in demand from cycle to cycle are likely to be larger as 
a percentage of small-volume movements than on large-volume movements, so a larger buffer above the average split time 
is often appropriate for the former. 

 
 

3.4 INTERSECTION-LEVEL PERFORMANCE MEASURES AND ANALYSIS 
TECHNIQUES 

The capacity measures discussed above are essential for determining the sufficiency of the 
intersection to accommodate existing or projected demand. However, capacity by itself is not easily 
perceived by the user. This section presents the most common user-perceived operational 
performance measures and analysis techniques used in timing individual intersections. 

3.4.1 Performance Measures 

The two primary user-perceived performance measures used to evaluate the performance of 
individual intersections are delays and queues. 

Control Delay and Intersection Level of Service 
Delay is defined in HCM 2000 as “the additional travel time experienced by a driver, passenger, 

or pedestrian.” Delay can be divided into a number of components, with total delay and control delay 
being of most interest for signal timing purposes. 

The total delay experienced by a road user can be defined as the difference between the travel 
time actually experienced and the reference travel time that would result in the absence of traffic 
control, changes in speed due to geometric conditions, any incidents, and the interaction with any 
other road users (adapted from the HCM definition). Control delay is the portion of delay that is 
attributable to the control device (the signal, its assignment of right-of-way, and the timing used to 
transition right-of-way in a safe manner) plus the time decelerating to a queue, waiting in queue, and 
accelerating from a queue. For typical through movements at a signalized intersection, total delay and 
control delay are the same in the absence of any incidents. 

Chapter 16 of the HCM provides equations for calculating control delay; primary contributing 
factors are lane group volume, lane group capacity, cycle length, and effective green time. The HCM 
control delay equation also includes factors that account for elements such as pretimed versus 
actuated control, the effect of upstream metering, and oversaturated conditions. Control delay is 
calculated separately for each movement; intersection control delay consists of an average across all 
movements, weighted by volume. The HCM defines Level of Service for signalized intersections in 
terms of control delay using delay thresholds given in Table 3-3. 
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Table 3-3 Motor vehicle LOS thresholds at signalized intersections 

LOS 
Control Delay per Vehicle 

(seconds per vehicle) 
A ≤ 10 
B > 10-20 
C > 20-35 
D > 35-55 
E > 55-80 
F > 80 

Source: (2) 
 
Queue Length 

Queue length is a measurement of the physical space vehicles will occupy while waiting to 
proceed through an intersection. It is commonly used to assess the amount of storage required for 
turn lanes and to determine whether the vehicles from one intersection will physically spill over into an 
adjacent intersection. 

Several queue length estimations are commonly used with signalized intersections. Average 
queue and 95th-percentile queue are commonly estimated for the time period for which the signal is 
red. However, it is sometimes useful to include the queue formation that occurs during green while 
the front of the queue is discharging and vehicles are arriving at the back of queue. Queues 
measured in this way are often noted as average back of queue or some percentile of back of queue. 
Appendix G to chapter 16 of the HCM 2000 provides procedures for calculating back of queue. 

3.4.2 Evaluation Techniques: The HCM Procedure for Signalized Intersections 

To calculate the user-based performance measures described above, the critical movement 
analysis procedures described previously are insufficient. The most commonly used procedure for 
estimating intersection-level performance measures is provided by the HCM operational analysis 
methodology for signalized intersections (Chapter 16 of the HCM). 

Capabilities 
The HCM procedure addresses many of the limitations of critical movement analysis, including 

the assumption of constant values of capacity for each lane and the ability to analyze different types 
of signal phasing. In addition, some software packages implement procedures that are adequate for 
many signal timing applications, even though they may or may not be exact replications of the HCM 
procedure. 

Known Limitations 
Known limitations of the HCM analysis procedures for signalized intersections exist under the 

following conditions (adapted from 1):  

• Available software products that perform HCM analyses generally do not 
accommodate intersections with more than four approaches; 

• The analysis may not be appropriate for alternative intersection designs; 

• The effect of queues that exceed the available storage bay length is not treated in 
sufficient detail, nor is the backup of queues that block a stop line during a portion of 
the green time; 

• Driveways located within the influence area of signalized intersections are not 
recognized; 

• The effect of arterial progression in coordinated systems is recognized, but only in 
terms of a coarse approximation;  
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• Heterogeneous effects on individual lanes within multilane lane groups (e.g., 
downstream taper, freeway on-ramp, driveways) are not recognized; and 

• The procedure accounts for right turns on red by reducing the right-turn volume 
without regard to when the turns can actually be made within the signal cycle. 

If any of these conditions exist, it may be necessary to proceed to arterial models or to simulation 
discussed in the next section to obtain a more accurate analysis. 

3.4.3 Practical Operational Approximations 

In many cases, a variety of practical approximations can be used at varying stages in signal 
timing development. Some practitioners often rely primarily on these practical approximations and 
then observe and fine-tune their implementation in the field. In all cases, these practical 
approximations are often simple enough to be calculated in one’s head, thus providing a method 
ready to be used in the field or as a quick check on calculations done using more advanced 
techniques. 

Cycle length 
At a planning level, it is common to assume a cycle length for a given intersection to estimate its 

capacity performance. If the cycle length for an intersection is unknown, common planning-level 
assumptions for cycle length based on the complexity of the intersection are given in Table 3-4. 
These assumptions do not account for cycle length requirements for coordinated operation (see 
Chapter 6), nor do they account for the ability for actuated intersections to vary the effective cycle 
length from cycle to cycle. These approximations, however, are useful in the procedures for 
estimating approximate queue lengths and for identifying whether a movement is substantially under 
or over capacity. 

Table 3-4 Planning-level cycle length assumptions 

Signal Complexity Commonly Assumed 
Cycle Length (s) 

Permissive left turns on both streets 60 
Protected left-turns, protected-permissive left turns, or split phasing on 
one street  

90 

Protected left-turns, protected-permissive left turn phasing, and/or split 
phasing on both streets 

120 

 

If an analysis is to be completed for an intersection in an existing coordinated system, the user 
should use the current cycle length. Choosing a different cycle length would require changing the 
coordinated plan for adjacent intersections and could have implications throughout the system. 

Average and 95th-Percentile Green Time 
Green time for individual movements can be approximated in many cases through estimating the 

number of vehicles per lane expected to be served in a given cycle and then setting an appropriate 
green time to serve that amount of traffic. This technique is useful for estimating green times for minor 
movements for which queue clearance is the primary objective and there is no intention to hold green 
time for vehicles to arrive and depart on green as one might do for coordinated through movements. 
For movements also serving pedestrians (e.g., minor-street through movements), this technique can 
provide an estimate of green time needed for cycles in which no pedestrian calls are placed, but it 
does not account for the additional time that may be required to provide pedestrian walk and 
clearance time. 

The process for estimating the average queue length for each cycle is given in Equation 3-4. It 
makes the simplifying and conservative assumption that the movement is timed so that all arriving 
vehicles for the movement arrive on red and that there is no residual queue at the end of the green. 
This assumption is realistic if the green time for the movement is a small percentage of the cycle 
length (e.g., less than 10 to 15 percent of the cycle) and thus would not apply to particularly high-
volume movements. 

3-16 



C
vQueueavg 3600

=   (3-4) 

where Queueavg is the average queue in vehicles per lane; v is the volume of the movement in 
vehicles per hour per lane, and C is the cycle length in seconds. For example, a volume of 150 
vehicles per hour per lane under a cycle length of 90 seconds will result in an average queue length 
of approximately 150 / (3600 / 90) = 3.75 vehicles. If using this value for timing or design, this queue 
length should be rounded up to the nearest vehicle, in this case 4 vehicles. 

For movements where the green time is a larger proportion of the cycle, the above formula does 
not account for the proportion of vehicles that arrive on green. In these cases, it is more accurate to 
account for the green time for the subject movement as shown in Equation 3-5. 

( )gC
vQueueavg −

=
3600

  (3-5) 

where Queueavg is the average queue in vehicles per lane; v is the volume of the movement in 
vehicles per hour per lane, C is the cycle length in seconds, and g is the effective green time in 
seconds. For example, a volume of 300 vehicles per hour per lane under a cycle length of 90 
seconds and an effective green time of 20 seconds will result in an average queue length of 
approximately 300 / (3600 / (90-20)) = 5.83 vehicles. If using this value for timing or design, this 
queue length should be rounded up to the nearest vehicle, in this case 6 vehicles. 

 

A useful approximation for saturation flow rate is to assume a value of 1800 
vehicles per hour for each lane, which results in a numerically simple value of 
2 seconds of green time per vehicle. It is also useful to assume a startup lost 
time of approximately 2 seconds. Therefore, a queue of 4 vehicles can be 
assumed to take 2 + (4 × 2) = 10 seconds to clear. 

One may use a Poisson distribution to estimate 95th-percentile queue from the average queue. In 
practice, the 95th-percentile queue is approximately 1.6 times the average queue for high-volume 
movements to approximately 2.0 times the average queue for low-volume movements. The following 
practical and simplifying approximation is useful in many cases for the purposes of signal timing, 
recognizing that it is overly conservative in some cases:  

avgth QueueQueue ⋅≈ 295    (3-6) 

Using the example in the previous paragraph, a movement with an average queue length of 3.75 
vehicles has a 95th-percentile queue length of approximately 7.5 vehicles, rounded up for timing or 
design purposes to 8 vehicles. This movement would need a 95th-percentile green time of 2 + (8 × 2) 
= 18 seconds. 

Some practitioners use the 95th-percentile queue for estimating green time for protected left turns 
and the average queue for estimating green time for protected-permissive left turns under the 
assumption that under protected-permissive operation, vehicles not served during the protected 
phase can be served during the permissive phase. This depends in part on the availability of gaps in 
the opposing through vehicle stream and thus may not be applicable in cases where the opposing 
through movement is approaching capacity. In these cases, a more detailed analysis is advisable. 

Another useful planning-level procedure used in design for estimating 95th-percentile queue 
length is to assume a value of 1 foot per vehicle being served during the hour. For example, a left-
turn movement with a volume of 150 vehicles per hour would have a 95th-percentile queue length of 
approximately 150 feet. This procedure is most accurate for cycle lengths around 90 seconds. For 
shorter cycle lengths, the queue length should be shortened (e.g., by 10 to 20 percent for a cycle 
length of 60 seconds); for longer cycle lengths, the queue length should be extended (e.g., by 10 to 
20 percent for a cycle length of 120 seconds). One could then use the value from this estimation 
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method by assuming that each vehicle occupies a space of 25 feet and then using the techniques 
described above to estimate the 95th-percentile green time for the movement. 

One must use caution using these practical approximations where queue 
length is critical. For example, if the queue from a left-turn lane exceeds 
available storage, it could block a through lane. If the blocked through lane is a 
critical movement, the performance of the entire intersection will be adversely 
affected, and field observations will not match office calculations. 

3.4.4 Intersection-Level Field Measurement 

Several field techniques can be used to measure some of the key intersection-level operational 
measures of effectiveness. The most common in practice is an intersection delay study. The 
FHWA/NTOC performance measures project selected delay (both recurring and non-recurring) as 
one of the measures to be considered for national standardization.  Since non-recurring delay is the 
delay that occurs in the presence of an incident, recurring delay is the measure that is applied to 
evaluate signal timing.  

Some (but not all) of the more commonly used performance measures can be calculated from 
each of these techniques. These and others are described in more detail in the ITE Manual of 
Transportation Engineering Studies (3) and other references. This section discusses some of the 
more commonly used methods. 

Stopped Delay 
A common intersection delay study is the method to estimate stopped delay. This procedure 

surveys a specified movement over a period of time. There are two data points collected during the 
survey, the total volume and the number of stopped vehicles at a given time interval. The aggregate 
sum of the stopped vehicles at the time interval is divided by the total entering volume to determine 
an average stopped delay. This method has been superseded in the HCM by the method to estimate 
control delay, described in the next section.  

Control Delay 
Control delay can be measured in the field by recording the arrival and departure time of vehicles 

for a movement or approach. This procedure is described in detail in the HCM in Appendix A of 
Chapter 16. A detailed description of the methodology and a worksheet are provided. This method 
does not directly capture all of the deceleration and acceleration associated with control delay but is 
indicated in the HCM to yield a reasonable estimate of control delay. 

Queue formation during oversaturated conditions can make it difficult to use this method, as 
queues often extend beyond the measurement area and can spill into other intersections, 
confounding any measurements. In these cases, travel time estimates for selected origin-destination 
pairs (as described in the following section) may be more useful.  

Delay Weighting for Specific User Types 
Delays can be focused primarily on vehicular traffic or can be weighted by particular vehicle 

types. To improve freight mobility, data collection could weight trucks more heavily than other traffic. 
Person delay is sometimes used by weighting the person carrying capacity of the vehicle. In these 
cases, transit vehicle capacity is calculated into the overall delay on the system. 

3.5 ARTERIAL- AND NETWORK-LEVEL PERFORMANCE MEASURES AND 
PREDICTION TECHNIQUES 

When considering signal timing among a series of signalized intersections, as for coordinated 
signal operation, performance measures and models that account for the relative interaction of 
adjacent intersections become important. This section presents the most common performance 
measures, prediction techniques, and field measurements used for evaluating signal timing 
performance along arterial streets and coordinated networks. The measures and methodologies in 
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this section, along with the measures for individual intersections described previously in this chapter, 
support the signal timing policies, the coordination techniques, and the signal timing process 
presented in Chapters 2, 6, and 7, respectively. 

3.5.1 Arterial- and Network-Level Performance Measures 

In addition to the estimation of intersection-level performance measures at each intersection 
along an arterial or within a network, a number of performance measures are used to assess how 
well the intersections fit together in terms of signal timing. These include stops, travel speed, and 
bandwidth and are described below. Other arterial- and network-level measures of effectiveness, 
including transit level of service, bicycle level of service, and pedestrian level of service, are 
sometimes used in developing and evaluating the effectiveness of signal timing. These are outside 
the scope of this document but are provided in the HCM. 

Stops 
Stops are also used frequently to measure signal system effectiveness.  Although this measure 

has not been identified as a candidate for standardization nationally, it is very important for two 
reasons: 

• Stops have a higher impact on emissions than delay does because an accelerating 
vehicle emits more pollutants and uses more fuel than an idling vehicle.  In other 
words, an idling vehicle must idle for many minutes before it emits as many pollutants 
as those emitted for a single stop. 

• Stops are a measure of the quality of progression along an arterial.  Motorists are 
often frustrated when they have to make multiple stops.  In some of the signal timing 
software, the user is given the option of defining the relative importance of stops and 
delays through the use of weighting factors.  If stops are assigned a high level of 
importance, progression on arterials will be improved, even though this may result in 
higher overall delay. 

Motor vehicle stops can often play a larger role than delay in the perception of the effectiveness 
of a signal timing plan along an arterial street or a network. Stops tend to be used more frequently in 
arterial applications where progression between intersections (and thus reduction of stops) is a 
desired objective. Many software packages, including signal timing optimization programs and 
simulation packages, include estimates of stops. 

Travel Time, Travel Speed, and Arterial Level of Service 
Travel time and travel speed is one of the most popular measures used to assess how well 

arterial traffic progresses. Travel speed accounts for both the delay at intersections and the travel 
time between intersections. 

The HCM can be used to determine arterial level of service (LOS) based on travel speed. The 
HCM defines arterial LOS as a function of the class of arterial under study and the travel speed along 
the arterial. This speed is based on intersection spacing, the running time between intersections, and 
the control delay to through vehicles at each signalized intersection. Because arterial level of service 
is calculated using delay for through vehicles regardless of origin or destination, the resulting speed 
estimates may not necessarily correspond to speed measurements made from end-to-end travel time 
runs that measure a small subset of the possible origin-destination combinations along an arterial. 

Table 3-5 presents the HCM’s definitions of classes of arterials based on design and functional 
categories, and 0 presents the threshold speeds for each class of arterial. Further detail can be found 
in Chapters 10 and 15 in the HCM. Note that these level of service thresholds only reflect the 
perspective of vehicular travel time; they do not account for the effects on transit, bicycles, and 
pedestrians. A broader, multimodal perspective on arterial level of service is being considered for the 
next edition of the HCM. 
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Table 3-5 HCM arterial class definitions 
 

Design Category 

Functional Category
Principal 
Arterial 

Minor 
Arterial 

High-Speed I N/A
Suburban II II 

Intermediate II III or IV 
Urban III or IV IV 

Source: (2) 
 

 

 

 
 

Table 3-6 Arterial level of service 
Urban Street Class I II III IV 
Range of free-flow 
speeds (FFS) 

55 to 45 mph 45 to 35 mph 35 to 30 mph 35 to 25 mph 

Typical FFS 50 mph 40 mph 35 mph 30 mph 
LOS Average Travel Speed (mph) 

A > 42 > 35 > 30 > 25 
B > 34 – 42 > 28 – 35 > 24 – 30 > 19 – 25 
C > 27 – 34 > 22 – 28 > 18 – 24 > 13 – 19 
D > 21 – 27 > 17 – 22 > 14 – 18 > 9 – 13 
E > 16 – 21 > 13 – 17 > 10 – 14 > 7 – 9 
F ≤ 16 ≤ 13 ≤ 10 ≤ 7 

Source: (2) 
 

Bandwidth, Bandwidth Efficiency, and Bandwidth Attainability 
Bandwidth, along with its associated measures of efficiency and attainability, are measures that 

are sometimes used to assess the effectiveness of a coordinated signal timing plan. Unlike the 
preceding measures, bandwidth is purely a function of the signal timing plan as it is oriented in time 
and space; the effect of traffic is not explicitly accounted for in the calculation. As a result, bandwidth 
is not directly tied to actual traffic performance, although it is sometimes used as a surrogate for 
potential traffic performance. The use of bandwidth in developing coordinated signal timing plans is 
described in more detail in Chapter 6. 

Bandwidth is defined as the maximum amount of green time for a designated movement as it 
passes through a corridor. It can be defined in terms of two consecutive intersections (sometimes 
referred to as link bandwidth) or in terms of an entire arterial (sometimes referred to as arterial 
bandwidth). Bandwidth is typically measured in seconds. 

Two related bandwidth measures, bandwidth efficiency and bandwidth attainability, are 
sometimes used to normalize bandwidth measures. Bandwidth efficiency is a measure that 
normalizes bandwidth against the cycle length for the arterial under study. The specific formula is 
given in Equation 3-7: 

C
BBE BA

2
+

=   (3-7) 

where E is bandwidth efficiency; BA and BB are the bandwidths in the forward and reverse 
directions, respectively, in seconds; and C is the cycle length in seconds. 

Efficiency is typically reported as a unitless decimal or percentage. The software program 
PASSER II provides guidelines to determine the quality of a particular efficiency; these are given in 
Table 3-7. 

B B
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Table 3-7 Guidelines for bandwidth efficiency 
Efficiency Range PASSER II Assessment 

0.00 – 0.12 Poor progression. 
0.13 – 0.24 Fair progression. 
0.25 – 0.36 Good progression. 
0.37 – 1.00 Great progression. 

Source: (4) 
 

Bandwidth attainability is a measure of how well the bandwidth makes use of the available green 
time for the coordinated movements at the most critical intersection in the corridor. It is given in 
Equation 3-8 as follows: 

critg
bandwidthityAttainabil =   (3-8) 

where gcrit is the green time for the coordinated movements at the intersection with the least 
amount of green time available for the coordinated movements. 

Attainability, as with efficiency, is typically reported as a unitless decimal or percentage. The 
software program PASSER II provides guidelines to determine the quality of a particular attainability; 
these are given in Table 3-8. An attainability of 100 percent suggests that all available green time 
through the most constrained intersection is being used by the green band. 

Table 3-8  Guidelines for bandwidth attainability 
Attainability Range PASSER II Guidance 

1.00 – 0.99 Increase minimum through phase. 
0.99 – 0.70 Fine-tuning needed. 
0.69 – 0.00 Major changes needed. 

Source: (4) 
 

Bandwidth is highly dependent on the demands on the non-coordinated phases (actuated 
intersections) and the offsets along the arterial. Bandwidth importance also varies based on traveler 
origin and destinations along a coordinated corridor. The more vehicles traveling the length of a 
coordinated corridor, without making turning movements, the more important bandwidth becomes as 
a measurement tool, and vice versa.  In addition, bandwidth, travel time, and stops are related to one 
another; a large bandwidth will result in shorter travel times and less stops to vehicles traveling the 
length of the corridor. 

Emissions 
Emissions are an important measure because they directly affect air quality.  Emissions may be 

particularly important in the case of programs funded by Congestion Mitigation and Air Quality 
(CMAQ) funds, which (as the name implies) use funds allocated with the objective of improved air 
quality. Emissions can be estimated by some of the software packages in use.  

Fuel Consumption 
Improved fuel efficiency of the transportation system is an important measure for reducing the 

costs to consumers and use of this energy source. Fuel consumption can be estimated by some of 
the software packages in use. 

Performance Index 
 Some software packages allow several measures of effectiveness to be mathematically 

combined into a single performance index, or PI.  This allows an optimization routine within the 
software package to search for combinations of cycle lengths, offsets, and splits that achieve an 
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optimal value of the performance index. The performance index itself is unlikely to be observable in 
the field, although its component measures may be observable.   

3.5.2 Evaluation Techniques 

Measures of effectiveness can be measured directly in the field or estimated using an analysis 
tool. Table 3-9 indicates the variety of field data collection and analytical techniques that can be used.   

Table 3-9 Evaluation Techniques for Performance Measures  
 

Measure Primary Evaluation Technique Supplemental Technique 

Delays Deterministic traffic analysis tool  Floating car runs (through movement  or intersection 
observation) 

Stops Field data collection using manual observers or 
floating car runs (See text on the next page.) Floating car runs or simulation 

Emissions Microscopic traffic simulation Environmental or planning models 
Fuel Efficiency Microscopic traffic simulation Environmental or planning models 
Travel Time Floating car runs Microscopic traffic simulation 
 
Arterial and Network Signal Timing Models 

For many practitioners, arterial and network signal timing models are the models of choice when 
developing signal timing plans, particularly for coordinated systems. Arterial and network signal timing 
models are distinguished from the isolated intersection methods described previously by the way they 
account for the arrival and departure of vehicles from one intersection to the next. Traffic progression 
is treated explicitly through using time-space diagrams or platoon progression techniques. Some 
models deterministically estimate the effect of actuated parameters for both vehicles and pedestrians, 
typically by using a combination of scaling factors for vehicle demand and the presence or absence of 
vehicle and/or pedestrian calls. 

A key feature of arterial and network signal timing models is the explicit effort to “optimize” signal 
timing to achieve a particular policy (see Chapter 2). To accomplish this, each model uses some type 
of algorithm to test a variety of combinations of cycle length, splits, and offsets to achieve a calculated 
value of one or more performance indices and then attempt to find an optimal value for those 
performance indices. In addition, most arterial and network signal timing models use elements of the 
HCM procedures to estimate certain parameters, such as saturation flow rate. 

Arterial and network signal timing models are frequently the most advanced type of model 
needed for most signal timing applications. However, because the models described in this 
section are deterministic, they lose validity in cases where demand exceeds capacity or where 
the queues from one intersection interact with the operation of an adjacent intersection. 
Therefore, cases with closely spaced intersections or with intersections exceeding capacity may not 
be well served by these types of deterministic models. In these cases, it may be necessary to use 
microscopic simulation models to obtain more realistic assessments of these effects. 

Microscopic Simulation Models 
In the context of signal timing, microscopic simulation models can be thought of as an advanced 

evaluation tool of a proposed signal timing plan. Most simulation models do not have any inherent 
signal timing optimization algorithms and instead depend on other programs to provide a fully 
specified signal timing plan for evaluation. However, simulation models typically can directly evaluate 
the effects of interactions between intersections or the effects of oversaturated conditions or demand 
starvation caused by upstream oversaturated conditions. Simulation models can also be useful to 
estimate the effects of short lanes where either the queue in the lane affects the operation of an 
adjacent lane or where the queue in the adjacent lane prevents volume from reaching the subject 
lane. 

Recent advances in technology have allowed direct linkages between simulation models and 
either actual signal controllers or software emulations of those controllers, known as hardware-in-the-
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loop (HITL) and software-in-the-loop (SITL), respectively. These in-the-loop simulations allow actual 
controllers and/or their algorithms to replace the approximation used in simulation models to more 
accurately reflect how a controller will operate. The simulation model is used to generate traffic flows 
and send vehicle and pedestrian calls to one or more controllers based on a detection design 
implemented in the simulation. The controller receives the calls as if it was operating in the field and 
uses its own internal algorithms to set signal indications based on the calls received and the 
implemented signal timing. The signal displays are passed back to the simulation model, to which 
traffic responds. 

When running simulation analyses to compare alternatives, care is needed to ensure that the 
resolution of the model is sufficient to model the type of control anticipated. A simulation model, for 
example, typically requires precision on the order of a tenth of a second to accurately replicate gap 
detection. Therefore, the use of coarser resolution settings to speed up simulation run time may yield 
incorrect results. 

3.5.3 Arterial and Network Field Measurement Techniques 

 Data collection of arterial and network measures of effectiveness can be conducted either 
manually or using automated techniques. The following sections discuss some of the more commonly 
employed techniques in more detail. 

Travel Time Runs 
Travel time studies evaluate the quality of traffic movements along an arterial and determine the 

locations, types, and extent of traffic delays. Common measures extracted from travel time runs 
include overall travel time, delay for through vehicles at individual intersections, number of stops, and 
the variability of delays and/or stops at intersections. The latter measure is often useful in 
demonstrating a change between uncoordinated and coordinated operation.  

The floating car method is the most commonly employed technique used for travel time runs. The 
vehicle driver is instructed to “float” with the traffic stream, which is defined as traveling at a speed 
that is representative of the other vehicles on the roadway.  This is accomplished by passing as many 
vehicles as pass the floating car (within reasonable safety limits).  The floating car data is then 
reduced to determine the number of stops, delay time, and travel time over the route traversed by the 
vehicle.  This process must be repeated several times to obtain good representative data.  

A variety of techniques have been used to collect travel time runs, ranging from manual 
measurements with stop watches to more advanced techniques using portable Global Positioning 
System (GPS) devices. GPS output provides the vehicle’s location (latitude and longitude) and 
velocity. The probe vehicle begins traveling along the corridor with the GPS set to record position and 
speed for each second of travel. The vehicle location and instantaneous velocity allows for an 
estimate of the performance measures of delay, percent runs stopped, and travel time. Special inputs 
can also be coded to denote an event such as the location of a stop bar or bus stop, or when a 
parking maneuver occurs.  

Of the variety of performance measures that can be used to evaluate arterial performance, four 
can be determined by travel time runs: 

• Travel Time is the total elapsed time spent driving a specific distance. The average 
travel time represents an average of the runs for a particular link or for the entire 
corridor.  

• Delay is the elapsed time spent driving in a stopped or near-stopped condition, often 
defined as speeds less than 5 mph. The average delay represents an average of the 
runs for a particular intersection or for the entire corridor.  

• Percent Runs Stopped is the percentage of the total number of travel time runs 
conducted during which a vehicle stops. 

• Average Speed is the average distance a vehicle travels within a measured amount of 
time (this is affected by the amount of time experienced in delay). 
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A sample travel time graph is shown in Figure 3-6 where distance along the corridor is 
represented along the x-axis and performance measures are plotted along the y-axis. This type of 
graphical display allows for ready comparison of before and after data along the corridor.  

A critical factor in the success of a travel time study using vehicle probes is the skill level of the 
driver(s) involved.  Inexperienced personnel may suddenly realize they are no longer traveling as part 
of the platoon and may adversely affect the platoon by inducing braking reactions in response to lane 
changes.  This is more likely to occur in flows at or near capacity.  

Figure 3-6 Sample travel time run result graph 
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Automated Collection of Measures of Effectiveness  

It is ideal to use a traffic signal system for automated collection of performance measures, but few 
agencies currently have that capability. In many cases, vehicle detectors are used to perform two 
different types of functions. 

The first function is to provide inputs for actuated signal control. When detectors are used for this 
purpose, they are typically installed near the intersection on the approaches under actuated control, 
which makes them less effective for performance measurements. 

The second function is to act as system sensors. These detectors are typically installed at a mid-
block location, which provides accurate measures of vehicle volumes and speeds. The information 
provided by system sensors can be used to support the following system functions:  

• acquiring traffic flow information to compute signal timing  

• identifying critical intersection control (CIC) 

• selecting timing plans  
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• developing on-line and off-line timing plans through optimization programs.   

Thus, the local intersection detectors are used directly by actuated controllers, whereas the 
system sensors are used to support the functions of the central computer or arterial master (5).  

To acquire data, the loop detector is best suited to computerized traffic signal control because it is 
reliable, accurate, and able to detect both presence and passage.  Using the presence and passage 
outputs, a number of variables, such as volume, occupancy, speed, delay, stops, queue lengths and 
travel time, can be defined to a varying degree of accuracy.  These variables are related to either 
traffic flow along the length of the detectorized roadway or in the immediate vicinity of the detectors 
(5).  Some of these measures of effectiveness that can be collected through loop detectors are 
described below.   

• Volume is the quantity that is most easy to obtain.  This quantity is the number of 
pulses measured during a given period. 

• Occupancy is the percent of time that a detector indicates a vehicle is present over a 
total time period. Occupancy can range from zero to 100 percent, depending on 
vehicle spacing.  Volume and occupancy are the most important variables for use in 
selecting traffic responsive timing plans and for many operating thresholds.   In some 
cases, volume can be used without occupancy.   It generally follows that occupancies 
of over 25 percent are a reliable indicator of the onset of congestion. (5)   

• Speed is another useful variable used for on-line or offline computation of signal timing 
plans using optimization programs.  For a single inductive loop detector, speed is 
inversely proportional to occupancy at a fixed volume.  Two loops (dual loop 
detectors—also known as speed traps) provide much more accurate speed 
measurements.  

3.6 SAFETY ASSESSMENT 
The safety performance of signal timing is often implicitly considered but seldom explicitly 

evaluated. The transportation profession is in the process of developing increasingly quantitative 
safety methodologies to allow analysis of safety measures of effectiveness comparable to their 
operational counterparts. The forthcoming Highway Safety Manual (6) represents a major step in this 
direction. In addition, further discussion on safety analysis as applied to signalized intersections may 
be found in FHWA’s Signalized Intersections: Informational Guide (1); the content in this section is 
largely adapted from that document. 

Statistical techniques for evaluating collision performance vary from basic to complex. They may 
compare the safety performance of a single signalized intersection to another group of similar 
intersections, or they may serve as a screening tool for sifting through a large group of sites and 
determining which site has the most promise for improvement. This section provides information 
about safety analyses focusing exclusively on whether or not there are safety issues at an 
intersection that will respond to signal timing; it also provides quantitative information about estimated 
safety impacts of signal timing changes.  

There are many factors in addition to signal timing that contribute to the safety performance of an 
intersection. There are also many new tools being developed to support quantitative safety analyses. 
Therefore, in the situation where it has been determined an intersection may respond to safety 
improvements, the analyst should be sure to consider more than signal timing changes as a 
possibility for improving safety.  

3.6.1 Crash Data Review 

Crash data is of widely varying quality. In general, the less severe the collision, the less likely it is 
for a crash to be reported to the local jurisdiction. As a result, it is common to experience systematic 
underreporting of property damage only (PDO) crashes. Crashes are sometimes reported 
inaccurately or subsequently inaccurately entered into the database, making it difficult for the analyst 
to accurately identify factors contributing to crashes. It is also notable that the number of crashes that 
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occur at a given location will vary from year to year partially due to changes in traffic volumes, 
weather conditions, travel patterns, and surrounding land uses, and partially due to regression to the 
mean. Regression to the mean is caused by the tendency for crashes at a location to fluctuate up and 
down over time as the average number of crashes per year converges to a long-term average. 
Therefore, the observed number of crashes in any given year may actually be higher or lower then 
the long-term average for the site. 

The evaluation of crash frequency, crash patterns, and crash severity remains an important part 
of a safety analysis. The analyst should obtain three to five years of crash data; summarize the 
crashes by type, severity, and environmental collisions; and prepare a collision diagram of the 
crashes to help identify trends. A site visit can also be helpful in identifying causal factors. It is also 
possible to statistically determine if any of the crashes by type, severity, or other environmental 
conditions (e.g. weather, pavement, time of day) are over-represented as compared to other 
comparable facilities. A variety of tests and other evaluative tools are discussed further in FHWA’s 
Signalized Intersections: Informational Guide (1). 

3.6.2 Quantitative Safety Assessment 

Signal timing is one of many factors which may contribute to crashes. Other factors may be 
horizontal and vertical alignment conditions, roadside features, sight distance, driver compliance with 
traffic control, access management near intersections, driver expectations, and roadway maintenance 
and lighting. If the purpose of the project is to update intersection signal timing, the analyst should be 
aware of the potential impacts to safety. Alternatively, if the site has been identified as one needing 
safety improvements the analyst should be aware that signal timing is one of many possible 
countermeasures for improving safety at an intersection. Table 3-10 provides a summary of crash 
types and possible signal timing changes to benefit safety. 
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Table 3-10 Summary of crash types and possible signal modifications to benefit safety 
 

 Collision with Another Vehicle Single-Vehicle Collision 
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Provide left-turn signal phasing ● ● ● ● ●      

Optimize clearance intervals ●  ●        
Restrict or eliminate turning 
maneuvers (including right turns on 
reds) 

● ● ● ●  ●  ●   

Employ signal coordination ●  ●     ●   
Implement emergency vehicle pre-
emption ● ● ● ● ● ● ● ●   

Improve traffic control of pedestrians 
and bicycles   ●   ●  ●   

Remove unwarranted signal   ●        
Provide/improve left-turn lane 
channelization* ● ● ● ● ●      

Provide/improve right turn lane 
channelization* ●  ● ●  ●  ●   

1  * While not technically part of signal timing, these have a significant impact on safety and should be 
considered. See the FHWA Signalized Intersections: Informational Guide (1) for more 
information. Ref: 9, Appendix 10 

 

Accident modification factors (AMFs) are used as a way to quantify crash reductions associated 
with safety improvements. These factors are developed based on rigorous before-after statistical 
analysis techniques that account for, among many factors, regression to the mean, sample size, and 
the effects of other treatments from the estimation process. AMFs which have been calculated using 
reliable before-after analyses will be quantified and will often also include a confidence interval. AMFs 
below 1.0 will likely have a safety benefit, and AMFs greater than 1.0 may degrade safety conditions. 
For example, studies have found that converting a 4-legged urban intersection from stop control to 
signal control will have an AMF for all fatal and injury crashes of 0.77. This means that there will be 
an anticipated reduction in crashes of 23 percent if a traffic signal were installed. 

Quantitative AMFs can be found in many sources (7, 8, 9). The most reliable sources are those 
that estimate AMFs using the more sophisticated before-after analytical techniques. In the future, the 
Highway Safety Manual (6) and the final report for NCHRP 17-25 “Crash Reduction Factors for Traffic 
Engineering and ITS Improvements” will also contain numerous AMFs. In addition, local jurisdictions 
can also develop their own AMFs based on studies conducted locally. 

3.7 SIGNAL WARRANTS 
Warrants for signalization are intended to create a minimum condition for which signalization may 

be the most appropriate treatment. Each of the warrants is based on simple volume, delay, or crash 
experience at the location before signalization is installed. None accounts for the specific design of 
the signal or the way it may be timed (e.g., pre-timed versus actuated). As a result, an engineering 
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evaluation should be conducted in conjunction with the evaluation of signal warrants to determine that 
the proposed signalization plan actually represents an improvement over existing conditions. 

The eight warrants presented in Chapter 4C of the 2003 MUTCD are as follows (10): 

• Warrant 1, Eight-Hour Vehicular Volume. This warrant consists of two volume-
based conditions, Minimum Vehicular Volume and Interruption of Continuous Traffic, 
of which one or both must be met over an eight-hour period.  

• Warrant 2, Four-Hour Vehicular Volume. This warrant is similar to Warrant 1 but 
relies on volume conditions over a four-hour period. 

• Warrant 3, Peak Hour. This warrant is primarily based on delay to minor movements 
during peak hour conditions. 

• Warrant 4, Pedestrian Volume. This warrant is intended for conditions where delay 
to pedestrians attempting to cross a street is excessive due to heavy traffic on that 
street. It consists of minimum pedestrian volumes and available gaps in traffic. 

• Warrant 5, School Crossing. This warrant is similar to Warrant 4 except that it is 
specifically intended for school crossing locations. 

• Warrant 6, Coordinated Signal System. This warrant is intended to allow signals 
that may assist in progression of traffic. It is only intended for use where the resulting 
signal spacing is not less than 1,000 feet (300 m). 

• Warrant 7, Crash Experience. This is the only specific safety-related warrant and is 
satisfied by a frequency of crashes over a specific period of time that can be corrected 
through the use of signalization. 

• Warrant 8, Roadway Network. This warrant may be used to support the use of a 
signal to concentrate traffic at specific locations. 

As noted in the MUTCD, “the satisfaction of a traffic signal warrant or warrants shall not in itself 
require the installation of a traffic control signal” (Section 4C.01, 10). 

 Signalization is not always the most appropriate form of traffic control for an 
intersection, and it is sometimes possible to create a larger benefit by 
removing a traffic signal than by retiming it. 

The MUTCD acknowledges this by stating that “since vehicular delay and the frequency of some 
types of crashes are sometimes greater under traffic signal control than under STOP sign control, 
consideration should be given to providing alternatives to traffic control signals even if one or more of 
the signal warrants has been satisfied.” (10). Potential alternatives include the use of warning signs, 
flashing beacons, geometric modifications, and/or conversion of the intersection to a stop-controlled 
intersection or a roundabout. 
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4.0 TRAFFIC SIGNAL DESIGN CONCEPTS 

This chapter documents the concepts of traffic signal design as they apply to traffic signal timing. 
The principles related to geometric design and operation are addressed in the Signalized 
Intersections: Informational Guide (1) The elements addressed in this Chapter include: signal control 
type, signal phasing, detection layout, and how the decisions made during traffic signal design affect 
signal timing for isolated (described in Chapter 5) and coordinated (described in Chapter 6) operation.  

This chapter consists of four sections. The first section provides an overview of the objectives of 
traffic signal design. The second section summarizes the basic concepts associated with key signal 
design elements. The third section describes a procedure for determining appropriate signal design 
elements for a given intersection. The last section provides guidelines for selecting signal design 
values and choosing from among design options. 

4.1 OVERVIEW 
The topic of traffic signal design broadly includes any of an intersection's traffic signal control 

elements that have a physical presence at the intersection. In this regard, the traffic control type (e.g., 
pre-timed, actuated) is implemented in the signal controller and cabinet. The signal phasing is 
implemented using signal heads, signal indications, and logic in the controller that governs their 
sequence. Detection is provided by various devices that identify users (such as vehicles and 
pedestrians) of the intersection. Other design elements exist (e.g., preemption); however, the 
aforementioned three elements are present at almost all intersections, and have a significant 
influence on intersection safety and efficiency. Hence, they are the subject of discussion in this 
chapter.  

The objective of signal design is to produce a design that yields safe and efficient operation for 
the prevailing conditions. This objective is accomplished by making design choices that are tailored to 
the specific facility conditions. Signal timing settings (as described in Chapter 5) can be changed as 
needed to accommodate changes in traffic demand, pattern, but signal design elements are relatively 
static and are typically more difficult (or costly) to change and thus are discussed as an introduction. 
The efficiency of an intersection is directly impacted by its signal design, and the detection layout can 
have a significant effect on the safety associated with high-speed intersection approaches (2).  

4.1.1 Relationship between Signal Timing and Traffic Control Design 

The traffic signal design process should recognize and accommodate signal timing 
considerations to insure effective operation of the intersection. A robust detection system is needed 
for the traffic signal to be able to respond to changes in traffic conditions. Detection systems sense 
when pedestrians and vehicles are at a traffic signal and use that information to determine who will be 
served next and how long the phase is served. The quality of intersection operation is particularly 
dependent on the relationship between the detection layout and the signal controller settings. For 
optimum performance, the detector layout and signal settings should be “tuned” to the geometry of 
the intersection, its traffic volume, and the approach speed. The tuning process consists of finding a 
balance between detector location (relative to the stop line), detector length, passage time, and 
minimum green time for the prevailing conditions. However, there is no strong consensus in the 
industry with regard to what is the “best balance.” 

Use of an iterative process in the design process results in an intersection that 
can take advantage of signal timing techniques to provide a high level of 
service to all users.  

 

The signal design can also be influenced by the traffic control device layout. Specifically, for a 
safe and effective signal design, it must be possible to properly position signal heads for maximum 
visibility for all movements. The MUTCD (3) describes the minimum standards for traffic signal 
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displays. These standards address the number, size, mounting alternatives, physical arrangement, 
and placement of the signal heads. They also include special considerations for left-turn phasing that 
address the number and arrangement of lenses in the left-turn signal head, the location of this head, 
and the display sequence it presents during the signal cycle. The reader is referred to the MUTCD for 
further information on this topic. The intent of this chapter is to highlight specific issues that affect 
signal timing and not replicate the information contained within the MUTCD.  

4.1.2 Traffic Signal System Design 

Traffic signals may operate in a system of intersections. The application of timing plans depends 
on the infrastructure available in the signal system. The typical hardware components of a signal 
system are shown in Figure 4-1. These components are described below. 

Figure 4-1 Physical components of a signal system 

 
 

1. Detection. Detectors are used to gather information about the “conditions” used in the local 
traffic signal controller at each intersection and to allocate time at the intersection. Detection may also 
be used to collect data that can support monitoring, managing, and measuring performance. Few 
agencies achieve all three functions with their detection system.  

2. Local Controller. (further described in Chapter 5 and 6) The local controller operates the 
displays through the load switches using the signal timing provided by the user. The local controller 
implements specific strategies from field inputs or directly from the central signal system operator. 

3. Master Controller. The master controller is an optional component of a system that facilitates 
communication between the “central” signal system and the local controllers for control decisions. 
The primary functions of the on-street master controller are to select the timing plans for a group of 
intersections, to process and store detector count information, and to monitor equipment operation. 

4. Traffic Control Center (Signal System). The traffic control center is used for a variety of 
functions. The central signal system is an alternative to using a master controller and contains the 
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operational database that stores controller data, monitors the system, and allows timing and other 
parameters to be modified. It may also facilitate the implementation of the advanced concepts 
described in Chapter 9. 

5. Communication. Several components of the system communicate through many forms. 
Communication facilitates coordination between controllers (see below). 

These system components works together to implement a control strategy, such as coordination. 
To understand the implementation of the strategy, one must have a rudimentary understanding of 
how a system is configured and how coordination is maintained at a system level. This is particularly 
important for troubleshooting.  

4.2 PHASING OVERVIEW 
Phasing represents the fundamental method by which a traffic signal accommodates the various 

users at an intersection in a safe and efficient manner. This section first presents definitions and 
terminology and then discusses the variety of phasing techniques used in common practice. 

4.2.1 Definitions and Terminology 

Definitions used in traffic signal timing have resulted in some confusion. In many cases, “the old 
way of doing things” confounds the ability of the industry to educate people new to the field. Over the 
years, the description of the “individual movements” of the dual-ring 8-movement controller as 
“phases” has blurred into common communicated terminology of “movement number” being 
synonymous as “phase number”.  Most signal designs and all controllers sold today provide eight 
standard phases within the signal controller; however, a four-phase intersection is commonly referred 
to in the literature to represent a standard four-legged intersection with protected left turns on all 
approaches. It is the intent of this document to reduce the ambiguous use of the term “phase” and for 
the purposes of this document, a phase is defined as a controller timing unit associated with the 
control of one or more movements. Each phase at an intersection has a set of timing, possibly 
containing vehicle and pedestrian timing. A phase may control both a through movement and a right 
turn movement on an approach.  

The MUTCD defines a signal phase as the right-of-way, yellow change, and red 
clearance intervals in a cycle that are assigned to an independent traffic 
movement or combination of traffic movements..  

Two additional terms that are important for improving the use of terminology within the signal 
timing industry is to articulate is the use of movement and interval. A movement reflects the user 
perspective and is defined by the user type and the action that is taken (turning movement for a 
vehicle or pedestrian crossing). Two different types of movements include those that have the right of 
way and those that must yield consistent with the rules of the road or the Uniform Vehicle Code. 

A simple example of the concept of movements is the intersection of one-way streets shown in 
Figure 4-1. In this example, the intersection is operated by two phases (2 and 4) and pedestrians are 
accommodated as concurrent movements to the traffic. Phase 2 will include a through and a right turn 
movement, while phase 4 will have a through and a left turn movement (appropriate turning 
movements are omitted from the diagram for simplicity). The right turn on phase 2 must yield to 
pedestrian traffic crossing the west leg of the intersection.  
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Figure 4-2 Phasing and movement diagram for the intersection of two one-way streets 

 
 

An interval is a duration of time during which the signal indications do not change. For example, a 
pedestrian phase contains three intervals—Walk, Flashing Don’t Walk, and solid Don’t Walk—and 
within the Walk and Flashing Don’t Walk intervals, the corresponding through movement will remain 
green.  

The movements served at an intersection can be categorized by the various users: vehicles, 
pedestrians, bicyclists, and transit. Figure 4-2 illustrates the typical vehicle and pedestrian 
movements at a four-leg intersection. In the context of this figure, bicycle and transit movements track 
the same paths as vehicle movements. These movements are regulated by the signal controller 
through their allocation to one or more signal phases. The following list defines some of the terms 
used to describe vehicle and pedestrian phasing (4): 

• A vehicular phase is defined as a phase that is allocated to one or more vehicular traffic 
movements, as timed by the controller unit. 

• A pedestrian phase is defined as a traffic phase allocated to pedestrian traffic that may 
provide a pedestrian indication either concurrent with one or more vehicular phases, or 
separate from all vehicular phases.  

• A traffic phase is defined as the green, change, and clearance intervals in a cycle 
assigned to specified movement(s) of traffic. 

• A cycle is defined as the total time to complete one sequence of signalization for all 
movements at an intersection. In an actuated controller unit, the cycle is a complete 
sequence of all signal indications. 

The assignments shown are typical for eight-phase controller operation although other 
assignments are possible. As can be seen in Figure 4-3, left-turn movements are assigned odd 
number phases, while through movements are assigned to even number phases. In this example, the 
southbound left-turn movement is protected and is associated with phase 5. The right-turn 
movements are not typically assigned to separate phases. For example, the westbound right-turn 
movement is compatible with the westbound through movement and thus shares phase 4.  

Typically, a pedestrian movement is associated with the concurrent vehicular phase running 
parallel and adjacent to it. As indicated earlier, this phase may include the concurrent right-turn 
movement that is associated with the through movement. As illustrated in Figure 4-3, pedestrians 
crossing the northern leg of the intersection are assigned the concurrent westbound vehicular phase 
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(phase 4), which conflicts with the eastbound left turn (phase 3), this is further described in the next 
section. The operation of a concurrent phase is influenced by both the vehicular and pedestrian 
movements that it serves.  

Figure 4-3 Typical vehicular and pedestrian movements at a four-leg intersection 

 
 

 
 

4.2.2 Ring-and-Barrier Diagrams 

Modern U.S. practice for signal control organizes phases by grouping them in a continuous loop 
(or ring) and separating the crossing or conflicting traffic streams with time between when they are 
allowed to operate, either by making the movements sequential or adding a barrier between the 
movements. The ring identifies phases that may operate one after another and are typically 
conflicting phases organized in a particular order. For instance, it may be desirable to separate the 
traffic traveling through the intersection in the northbound direction from the southbound left turn 
movement. A change interval and clearance time is used to separate that movement in time.  

In Figure 4-4, a “barrier” would be used to separate the east-west movements from north-south 
movements to avoid operating conflicting movements at the same time. They are also used to define 
a relationship between the rings to assure compatible movements. The barrier represents a reference 
point in the cycle at which a phase in each ring has reached a point of termination; both rings must 
cross the barrier simultaneously.  

The time sequence of phases can be described using a ring and barrier diagram. Some common 
rules for number phases at an intersection (which are applicable to the diagram) are provided in the 
following list, which assumes leading left turns and separate left-turn phases. 
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• Phases 1, 2, 3, and 4 are assigned to Ring 1. Phases 5, 6, 7, and 8 are assigned to Ring 2. 

• Phases 1, 2, 5, and 6 are assigned to Barrier 1.  Phases 3,4,7, and 8 are assigned to Barrier 
2. 

• A phase pair contains two phases within the same ring and barrier that cannot be displayed 
concurrently.  Examples of phase pairs include 1+2, 5+6, 3+4, and 7+8.  Phases within a 
phase pair can be reversed (e.g. 2+1, 6+5, etc.)  Phase pairs within the same barrier must 
end simultaneously (i.e., end at the barrier). For example, phase pairs 1+2 and 5+6 must end 
simultaneously at the end of barrier 1 and phase pairs 3+4 and 7+8 must end simultaneously 
at the end of barrier 2. 

• Phase pair 1+2 can operate concurrently with phase pair 5+6. Phase pair 3+4 can operate 
concurrently with phase pair 7+8. These phase pairs are also known as concurrency groups 
because they can time together.  

• One common practice is to assign phases 2 and 6 to the major street movements and the 
phases on the other side of the barrier to the minor road movements. Another practice is to 
define this by direction (phase 4 may be the most northerly pointed phase).  

An example ring diagram is shown in Figure 4-4. The sequence of phases is shown as they 
occur in time, proceeding from left to right. The figure illustrates a phase sequence with left-turn 
movements leading the opposing through movements on both the major and minor streets. The 
diagram shows phase 1 and 5 ending at the same time, but they operate independently and can 
end at different times. The subsequent phase (phases 2 and 6 respectively) may begin once the 
previous phase has used its time. Once the barrier is crossed phases 3 and 7 operate followed by 
phases 4 and 8. The cycle ends with the completion of phases 4 and 8.  

Figure 4-4 Standard ring-and-barrier diagram 

 
 

  
When considering signal phasing it is helpful to start at the most basic, one where two one-way 

streets intersect. Figure 4-5 shows a ring and barrier structure that compliments the phase diagram 
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described previously in Figure 4-3. All movements on the street are served (vehicles, bicycles, and 
pedestrians) in one direction during one phase, and all movements on the cross street during the 
other phase. It should be noted that it is common practice to assign pedestrians to a through traffic 
movement, with the underlying assumption that a motorist or bicyclist making a right turn must yield to 
pedestrians as per most Uniform Vehicle Code (5). However, care should be exercised with this 
concurrent pedestrian phasing approach when there are exclusive right-turn lanes with high right turn 
volumes (6]. 

Figure 4-5 Ring-and-barrier diagram for intersection of two one-way streets 

 
 

In this example, the left-turning movements are either non-existent or prohibited (phase 2) or are 
protected (phase 4). Application of this concept at a more typical intersection of two-way streets uses 
the standard ring and barrier structure described in Figure 4-4.  

Assignment of phase numbers to signalized intersections is somewhat 
arbitrary based on historical design principles, but there are some rules that 
have been applied to standardize operation.  

 

Depending on the complexity of the intersection, 2 to 8 phases are typically used, although some 
controllers can provide up to 40 phases to serve complex intersections or sets of intersections. 
Developing an appropriate phasing plan begins with determining the left-turn phasing type at the 
intersection. Section 4.4 presents some of the guidance related to selection of appropriate left turn 
phasing based on traffic volumes and safety experience. 

4.3 LEFT-TURN DISPLAY OPTIONS 
There are five options for the left-turn phasing at an intersection: permissive only, protected only, 

protected-permissive, split phasing, and prohibited. Phasing can have a significant impact on signal 
system effectiveness for a number of reasons, including: 
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• Permissive only left turn operation may reduce delay for the intersection, but may 
adversely affect intersection safely, because it requires motorists to choose acceptable 
gaps. 

• Protected only left-turn phases may reduce delay for turning vehicles but are likely to 
increase overall intersection delay.  

• Protected-permissive left turn phases can offer a good compromise between safety and 
efficiency but could limit available options to maximize signal progression during 
coordination unless innovative displays are used. 

•  Split phasing may be applicable with shared lanes, but could increase coordinated cycle 
length if both split phases are provided a concurrent pedestrian phase. 

• Prohibited left turns may be used selectively to reduce conflicts at the intersection. 

4.3.1 Permissive Only Left-Turn Phasing 

Permissive only operation requires left-turning drivers to yield to the conflicting vehicle and 
pedestrian traffic streams before completing the turn. In the permissive mode, the left-turn movement 
is served concurrently with the adjacent through movement. Both the left turn and the opposing 
through movements are presented with a circular green indication.  Thus, in this left turn display 
option, a green arrow is never provided. 

Permissive operation is primarily used when traffic is light to moderate and sight distance is 
adequate.  This display option provides the most efficient operation for green allocation at the 
intersection. The efficiency of this mode is dependent on the availability of gaps in the conflicting 
streams through which the turn can be safely completed. This mode can have an adverse affect on 
safety in some situations, such as when the left-turn driver's view of conflicting traffic is restricted or 
when adequate gaps in traffic are not present.  The yellow trap can occur for the “permissive only” left 
turn when the opposite direction has a lagging left turn movement. Figure 4-6 and the following 
figures are adapted from those presented in the Signalized Intersections: Informational Guide Report 
and thus, phase 2 is defined as the eastbound movement. 
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Figure 4-6 Ring-and-barrier diagram showing permissive phasing 

 
 

4.3.2 Protected Only Left-Turn Phasing 

Protected only operation assigns the right-of-way to drivers turning left at the intersection and 
allows turns to be made only on a green arrow display. This operation provides for efficient left-turn 
movement service; however, the added left-turn phase increases the lost time within the cycle length 
and may increase delay to the other movements. An exclusive left-turn lane is typically provided with 
this phasing as shown in Figure 4-7. The left-turn phase is indicated by a green arrow signal 
indication. This type operation is recognized to provide the safest left-turn operation. 

4-9



Figure 4-7 Ring-and-barrier diagram showing protected phasing 

 
 

4.3.3 Protected-Permissive Left-Turn Phasing 

Protected-permissive operation represents a combination of the permissive and protected modes. 
Left-turning drivers have the right-of-way during the protected left-turn phase. They can also complete 
the turn "permissively" when the adjacent through movement receives its circular green indication as 
illustrated in Figure 4-8. This mode provides for efficient left-turn movement service, often without 
causing a significant increase in delay to other movements. This mode also tends to provide a 
relatively safe left-turn operation, provided that adequate sight distance is available and turns during 
the permissive component can be safely completed. 

Figure 4-8 Ring-and-barrier diagram showing protected-permissive phasing 

 
 

Protected-permissive phasing should be used with caution when a phasing sequence other than 
lead-lead left-turn phasing is being deployed. Section 4.4.2 provides additional detail on this matter.  

4.3.4 Split Phasing 

Split phasing represents an assignment of the right-of-way to all movements of a particular 
approach, followed by all of the movements of the opposing approach.  This is depicted in Figure 4-9.  
Spilt phasing may be necessary when intersection geometry results in partially conflicting vehicle 
paths through the intersections or where the approaches are offset such that left turning vehicles 
would have to occupy the same space to complete their turns. Split phasing avoids the conflict of 
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opposing left turn vehicle paths. Similarly, if the intersection has high left turn and through volume, the 
traffic engineer may have to use shared left turn and through lanes to make efficient use of the 
approach which would also result in split phasing for the approach. 

Figure 4-9 Ring-and-barrier diagram showing split phasing 

 
 

 
Split phasing may be helpful if any of the following conditions are present (7): 

• There is a need to accommodate one or more left-turn lanes on each approach, but 
sufficient width is not available to ensure adequate separation in the middle of the 
intersection. This problem may also be caused by a large intersection skew angle. 

• The larger left-turn lane volume is equal to its opposing through lane volume during most 
hours of the day ("lane volume" represents the movement volume divided by the number 
of lanes serving it.) 

• The width of the road is constrained such that an approach lane is shared by the through 
and left-turn movements yet the left-turn volume is sufficient to justify a left-turn phase. 

• One of the two approaches has heavy volume, the other approach has minimal volume, 
and actuated control is used. In this situation, the phase associated with the low-volume 
approach would rarely be called and the intersection would function more nearly as a "T" 
intersection. 

• Crash history indicates an unusually large number of sideswipe or head-on crashes in the 
middle of the intersection and involving left-turning vehicles.  

This phasing is typically less efficient than other types of left-turn phasing. It typically increases 
the cycle length, or if the cycle length is fixed, reduces the time available to the intersecting road. 
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4.3.5 Prohibition of Left-Turns as a Phasing Option 

Prohibition of left turns on an approach is an option that has been implemented in some cases to 
maintain mobility at an intersection. In this case, a supplemental sign may be provided that indicates 
“no left turn”. In some cases, these have been applied only during certain times of day, when gaps in 
traffic are unavailable and operation of permitted phasing may be unsafe. Figure 4-10 is an example 
from Toronto, Ontario, that prohibits left turns during the morning and evening periods. 

Figure 4-10 Prohibited left turns by time of day 

 
 

In general, the operational mode used for one left-turn movement on a road is also typically used 
for the other (opposing) left-turn movement. For example, if one left-turn movement is permissive, the 
opposing left turn is also permissive. However, this agreement is not required and the decision of 
mode should be movement-specific based on factors such as sight distance, volumes, number of 
turning lanes, number of opposing lanes, and leading vs lagging left turn operation. 

4.3.6 Guidelines for Selecting Left-Turn Phasing 

A variety of guidelines exist that have been developed to indicate conditions where the benefits of 
a left-turn phase typically outweigh its adverse impact to intersection operation. Many of these 
guidelines indicate that a left-turn phase can be justified based on consideration of several factors 
that ultimately tie back to the operational or safety benefits derived. These factors include: 

• Left-turn and opposing through volumes 

• Number of opposing through lanes 

• Cycle length 

• Speed of opposing traffic 

• Sight distance 

• Crash history 

The flowchart shown in Figure 4-11 can be used to assist in the determination of whether a left-
turn phase is needed and whether the operational mode should be protected or protected-permissive. 
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These guidelines were derived from a variety of sources (8;9). Application of the flowchart requires 
the separate evaluation of each left-turn movement on the subject road.  

 

Figure 4-11 Guidelines for determining the potential need for a left-turn phase 

Has the critical number of crashes Cpt been equalled or 
exceeded?

Is left-turn driver sight distance to oncoming vehicles less 
than SDc (equals 5.5 s travel time)?

Number of           Period During        Critical Left-Turn-Related Crash Count
  Left-turn           Which Crashes     When Considering    When Considering
Movements on    are Considered     Protected-only, Cpt   Prot.+Perm, Cp+p

Subject Road         (years)            (crashes/period)        (crashes/period)
     One                     1                            6                              4
     One                     2                           11                             6
     One                     3                           14                             7
     Both                    1                           11                             6
     Both                    2                           18                             9
     Both                    3                           26                            13

 Oncoming Traffic       Minimum Sight Distance to
Speed Limit (mph)     Oncoming Vehicles, SDc (ft)
            25                               200
            30                               240
            35                               280
            40                               320
            45                               360
           50                               400                          

            55                               440
            60                               480

How many left-turn lanes are on the subject approach?

How many through lanes are on the opposing approach?

Is left-turn volume 2 veh/cycle or less during the peak 
hour?

Is 85th percentile, or speed limit, of opposing traffic 
greater than 45 mph?

How many through lanes on the opposing approach?

Is Vlt x Vo > 50,000 during 
the peak hour?

Is Vlt x Vo > 100,000 during 
the peak hour?

Is left-turn delay equal to:
  a. 2.0 veh-hrs or more, and
  b. greater than 35 s/veh
during the peak hour?

Has the critical number of 
crashes Cp+p been equalled 

or exceeded?

Protected

ProtectedCan sight restriction be removed by 
offsetting the opposing left-turn lanes?

Protected

Protected

Permissive

Start

Protected + Permissive (desirable) or Protected only

No

Yes

Yes

No

No

Yes

2 or more

Less than 2

4 or more

Less than 4

No

Yes

1

Protected
Yes

No

2 or 3

Yes No NoYes Yes

No

Yes

No

Variables
Vlt = left-turn volume on the subject approach, veh/h
Vo = through plus right-turn volume on the approach opposing the subject left-turn movement, veh/h  

 
Source: Adapted from (Kell and Fullerton, 1998; Orcutt, 1993; Traffic Engineering Manual, 1999). 
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The objective of the flow chart is to identify the least restrictive left-turn operational mode. A 
secondary objective is to provide a structured procedure for the evaluation of left-turn phasing for the 
purpose of promoting consistency in left-turn phase application.  

The critical left-turn crash counts identified in the figure are based on an underlying average 
critical crash frequency and recognize the inherent variability of crash data. The underlying averages 
are 1.3 crashes per year and 3.0 crashes per year when considering protected-permissive and 
protected only left-turn phasing, respectively. If the reported crash count for existing permissive 
operation exceeds the critical value, then it is likely that the subject intersection has an average left-
turn crash frequency that exceeds the aforementioned average (5 percent chance of error) and a 
more restrictive operational mode would likely improve the safety of the left-turn maneuver. 

The flowchart has two alternative paths following the check of opposing traffic speed. One path 
requires knowledge of left-turn delay; the other requires knowledge of the left-turn and opposing 
through volumes. The left-turn delay referred to in the flowchart is the delay incurred when no left-turn 
phase is provided (i.e., the left-turn movement operates in the permissive mode). 

4.4 LEFT-TURN PHASE SEQUENCE OPTIONS 
It may be advantageous under certain circumstances to change the sequence in which left turns 

are served relative to their complementary through movements. This is done by reversing the 
sequence of a pair of complementary phases, as is shown for phases 1 and 2 in Figure 4-4. In this 
example, phase 1 is said to “lag” phase 2. Specifically, Figure 4-12 shows phases 2 and 6 starting 
and ending at different times in the cycle. This independence between the through phases can be 
desirable under coordinated operations because it can accommodate platoons of traffic arriving from 
each direction at different times. 

Figure 4-12 Ring-and-barrier diagram showing protected lead-lag left turns 
 

 
 

4.4.1 Lead-Lead Left-Turn Phase Sequence 

The most commonly used left-turn phase sequence is the "lead-lead" sequence which has both 
opposing left-turn phases starting at the same time. If a single ring structure is used, then the two 
phases also end at the same time. If an actuated dual ring structure is used, then each left-turn phase 
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is assigned to a different ring such that each can end when the left-turn demand is served (i.e., they 
can end at different times). The advantages of this phasing option are: (1) that drivers react quickly to 
the leading green arrow indication and (2) it minimizes conflicts between left-turn and through 
movements on the same approach, especially when the left-turn volume exceeds its available storage 
length (or no left-turn lane is provided). A more detailed discussion of the advantages of leading left-
turn phases is provided in Chapter 13 of the Traffic Engineering Handbook (10). 

4.4.2 Lag-Lag Left-Turn Phase Sequence 

This left-turn phase sequence is most commonly used in coordinated systems with closely 
spaced signals, such as diamond interchanges. It has both opposing left-turn phases ending at the 
same time. If it is implemented in a single ring structure, then the two phases also start at the same 
time. If a dual-ring structure is used, then each left-turn phase is assigned to a different ring such that 
each can start when the left-turn demand is served (i.e., they can start at different times).  

Lagging left-turn phasing is also recognized to offer operational benefits for the following special 
situations: 

• At "T" intersections when the one left-turn phase that exists is combined with a protected-
permissive mode. 

• At the intersection of a two-way street and a one-way street where the one left-turn phase 
that exists is combined with a protected-permissive mode. 

• At a n interchange, or a pair of closely-spaced interconnected intersections, where both 
intersections have a left-turn phase and each are combined with the protected-permissive 
mode. 

When used with protected phasing, this phase sequence provides a similar operational efficiency 
as a lead-lead or lead-lag phase sequences. However, differences emerge when they are used with 
protected-permissive mode. One disadvantage of lagging left-turn phases is that drivers tend not to 
react as quickly to the green arrow indication. Another disadvantage is that, if a left-turn bay does not 
exist or is relatively short, then queued left-turn vehicles may block the inside through lane during the 
initial through movement phase. 

When lag-lag phasing is used at a four-leg intersection where both phases are used with the 
protected-permissive mode, then both left-turn phases must start at the same time to avoid the 
"yellow trap" (or left-turn trap) problem, illustrated in Figure 4-13. This problem stems from the 
potential conflict between left-turning vehicles and oncoming vehicles at the end of the adjacent 
through phase. Of the two through movement phases serving the subject street, the trap is 
associated with the first through movement phase to terminate and occurs during this phase's change 
period. The left-turn driver seeking a gap in oncoming traffic during the through phase, first sees the 
yellow ball indication; then incorrectly assumes that the oncoming traffic also sees a yellow indication; 
and then turns across the oncoming traffic stream without regard to the availability of a safe gap. 

The "yellow trap" problem can be alleviated by using one of the following techniques: 

• Use the protected-only mode for both left-turn movements. 

• Use a single-ring structure to ensure that both through movement phases end at the 
same time (use with the protected-permissive mode). 

• Use a flashing yellow arrow or "Dallas Display" for both left-turn signal heads and use the 
protected-permissive mode for both left-turn movements. 
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Figure 4-13 Illustration of the yellow trap 

  
Source: FHWA Signalized Intersection Guide 

 

In fact, under at least one condition, the second technique can operate more efficiently than dual-
ring lead-lead phasing. This condition occurs when the left-turn volume is moderate to heavy and 
relatively equal on both approaches. Regardless, a detailed operational evaluation should always be 
used to confirm that lag-lag phasing operates more efficiently than other phasing options. 

The third technique avoids the yellow trap by using an overlap in the controller and a five-section 
left-turn signal head. An overlap is a controller output (to the signal head load switch) that is 
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associated with two or more phases. In this application, the left-turn green and yellow arrow 
indications are associated with the subject left-turn phase; and the left-turn green, yellow, and red ball 
indications are associated with the opposing through movement phase (as opposed to those of the 
adjacent through phase). Two types of protected-permissive displays have been developed to provide 
more operational flexibility and avoid the “yellow trap” problem: the flashing yellow arrow and the 
“Dallas Display”. 

The flashing yellow arrow is contained within a three-, four-, or five-section head and provides a 
permissive indication to the driver that operates concurrent with the opposing through movement 
rather than the adjacent through movement. Researchers for National Cooperative Highway 
Research Program (NCHRP) Project 3-54 studied alternatives to the green ball indication for 
permissive left turn movements. This study was conducted over a 7-year period and comprised a very 
comprehensive research process, including engineering analyses, static and video-based driver 
comprehension studies, field implementation, video conflict studies, and crash analyses. This study 
(11) recommended that a flashing yellow arrow be allowed as an alternative to the circular green for 
permissive left-turn intervals. 

• The flashing yellow arrow was found to be the best overall alternative to the circular green 
as the permissive signal display for a left-turn movement.  

• A flashing yellow arrow was found to have a high level of understanding and correct 
response by left-turn drivers, and a lower fail-critical rate than the circular green. 

• The flashing yellow arrow display in a separate signal face for the left-turn movement 
offers more versatility in field application. It is capable of being operated in any of the 
various modes of left-turn operation by time of day, and is easily programmed to avoid the 
"yellow trap" associated with some permissive turns at the end of the circular green 
display. 

Subsequent to the publication of the NCHRP research, FHWA has issued an Interim Approval 
and no longer requires a Request to Experiment for this display. As of this writing, it has been 
proposed for inclusion in the next revision to the MUTCD.  

In the “Dallas Display”, the signal head uses louvers on the yellow and green ball indications to 
restrict visibility of the left-turn display to adjacent lanes. The louvered signal head is referred to as 
the "Dallas Display." With this display, both left-turn phases can operate in the protected-permissive 
mode and the trap is avoided. 

4.4.3 Lead-Lag Left-Turn Phase Sequence 

This left-turn phase sequence is generally used to accommodate through movement progression 
in a coordinated signal system. The aforementioned "yellow trap" may occur if the leading left-turn 
movement operates in the protected-permissive mode and the two through movement phases time 
concurrently during a portion of the cycle. The "yellow trap" problem can be alleviated by using one of 
the following techniques: 

• Use the protected only mode for the leading left-turn movement. 

• Use a single ring structure that ensures that the two through movement phases do not 
time concurrently (use with the protected-permissive mode). 

• Use a flashing yellow arrow or "Dallas Display" for the left-turn signal head associated 
with the leading left-turn phase and use the protected-permissive mode for both left-turn 
movements. 

The first two techniques will likely have an adverse effect on operations, relative to a dual ring 
implementation of lead-lag phasing with protected-permissive operation. However, they avoid the 
potential adverse effect a yellow trap would have on safety. 

The third technique avoids the yellow trap by using an overlap in the controller and a five section 
left-turn signal head. This use of overlap was described in the previous discussion of lag-lag left-turn 
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phasing. However, in practice, the Dallas Display is used for both the leading and the lagging left-turn 
signal heads because it improves operational performance (12). 

Lead-lag phasing is also recognized to offer operational benefits for the following special 
situations: 

• Where there is inadequate space in the intersection to safely accommodate the 
simultaneous service of the opposing left-turn movements. However, in this application, a 
single ring structure (or equivalent functionality in a dual ring structure) should be used to 
ensure that the two left-turn phases never time concurrently. 

• Intersections where the leading left-turn movement is not provided an exclusive lane (or 
the available left-turn storage is relatively small). 

4.5 PEDESTRIAN PHASING 
Pedestrian movements are typically served concurrently with the adjacent through movement 

phase at an intersection. This is done to simplify the operation of the intersection primarily and is 
largely a legacy issue in our application of signal logic and control. Typical application of pedestrian 
operation puts pedestrians in conflict with right-turning vehicles and left-turning vehicles that operate 
in a permissive mode, by inviting their movement at the same time. There are specific measures that 
can be used to mitigate this potential conflict, three common options include:  

• Leading pedestrian interval. As shown in Figure 4-14b, a leading pedestrian interval 
starts a few seconds before the adjacent through movement phase. This allows 
pedestrians to establish a presence in the crosswalk and thereby reduce conflicts with 
turning vehicles. This option supports improved safety for pedestrians by allowing them 
increased visibility within the intersection and is applicable to intersections where there are 
significant pedestrian-vehicle conflicts (13).  

• Lagging pedestrian interval. A lagging pedestrian interval option operates similarly to a 
leading pedestrian interval, except that the pedestrian walk interval starts several seconds 
after the adjacent through movement phase. This option allows a waiting right-turn queue 
to clear before the pedestrian walk indication is presented and reduces conflicts with right-
turning vehicles. It is applicable to intersections where there is: (1) a high right-turn volume 
and (2) either an exclusive right-turn lane (or lanes) or the two intersecting roads have 
one-way traffic (14).  

• Exclusive pedestrian phase (also “pedestrian scramble” or “Barnes’ Dance”) As shown in 
Figure 4-14c, an exclusive pedestrian phase dedicates an additional phase for the 
exclusive use of all pedestrians. This additional phase is configured such that no vehicular 
movements are served concurrently with pedestrian traffic. During this phase, pedestrians 
can cross any of the intersection legs and may even be allowed to cross the intersection in 
a diagonal path. This type of phasing has an advantage of reducing conflicts between 
right-turning vehicles and pedestrians, but it comes at a penalty of reduced vehicular 
capacity and longer cycle lengths (which increases delay to all users). The exclusive 
pedestrian phase is not frequently used but can be found in the central business districts 
of several cities, including Denver and San Francisco. 
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Figure 4-14 Ring-barrier diagrams showing a leading pedestrian interval and an exclusive 
pedestrian phase 
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4.6 RIGHT-TURN PHASING  
Two types of right-turn phasing are addressed in this section. The first type is based on the 

addition of a phase to the signal cycle that exclusively serves one or more right-turn movements. This 
type of right-turn phasing is rarely used. If it is being considered, then its operational or safety benefits 
should be evaluated and shown to outweigh its adverse impact on the efficiency of the other 
intersection movements. 

The second type of right-turn phasing is based on the assignment of the right-turn movement to 
the phase serving the complementary left-turn movement on the crossroad. The following conditions 
should be satisfied before using this type of right-turn phasing: 

• The subject right-turn movement is served by one or more exclusive right-turn lanes. 

• The right-turn volume is high (300 vehicles per hour or more) and is a critical movement 
at the intersection (see Chapter 3 for more details). 

• A protected left-turn phase is provided for the complementary left-turn movement on the 
intersecting road. 

• U-turns from the complementary left-turn are prohibited. 

If the aforementioned conditions are satisfied, then the appropriate operational mode can be 
determined. If the through movement phase for the subject intersection approach serves a pedestrian 
movement, then the right-turn phasing should operate in the protected-permissive mode. As shown in 
Figure 4-15, the permissive right-turn operation would occur during the adjacent through movement 
phase, and the protected right-turn operation would occur during the complementary left-turn phase. 

Figure 4-15 Phase diagram illustrating a right-turn overlap 

 
 

If the through movement phase for the subject intersection approach does not serve a pedestrian 
movement, then the right-turn phasing should operate in the protected only mode during both the 
adjacent through movement phase and the complementary left-turn phase. A controller overlap may 
be used to provide this sequence. 

4.7 DETECTION FUNDAMENTALS 
Detection at an intersection informs the signal controller that a user desires service (often called 

“demand” for service). Detectors place calls into the traffic signal controller. The controller uses this 
information and the signal timing to determine the display provided to the users. Detection for 
pedestrians is limited in most cases to push buttons as shown in Figure 4-16, although accessible 
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pedestrian signal detectors are increasing in their use. The FHWA’s Pedestrian Facilities User Guide-
Providing Safety and Mobility (15) is a resource describing more detail related to other equipment.  

Figure 4-16 Examples of pedestrian push buttons 

 
 

Source: Fred Ranck,FHWA, Illinois, Naperville, intersection of Washington Street at Shuman Blvd 
 

There are various forms of vehicle detection technologies, and strengths and weaknesses of each are described 
in the Traffic Detector Handbook, 3rd edition (2006). The detection design for an intersection describes the size, 
number, location, and functionality of each detector. Most engineering drawings include the wiring diagram for 
how detectors are associated to phases. Signal timing settings such as the passage time, delay, extend, and 
other related parameters are described in more detail in Chapter 5. 

The size and location of detectors is an important element in traffic signal design. Detectors can 
consist of one 6-foot-by-6-foot inductive loop detector, a series of closely spaced 6-foot-by-6-foot loop 
detectors (may be circular in shape as shown in Figure 4-17), one long (6-foot-by-40-foot) loop 
detector, or alternative detection technology (e.g., video, microwave, etc.) that can monitor an 
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equivalent length of roadway. This detection zone can be used to meet the objectives described 
below.  

Figure 4-17 Example of vehicle detector design (through lane on side street) 

 
 

(a) Schematic design of loop detector design 
 

 
 (b) Physical representation of loop detectors 

 
A “call” represents the controller’s registration of a request for service on a specified phase. A call 

can be triggered by an actuation from any detection, vehicular, pedestrian, or other or through a 
controller function. When triggered by a vehicle detection unit, the call’s start and end time can be 
equal to that of the actuation from the detection unit, or it can be modified using the controller’s 
detector parameters (e.g., delay, extend, call, queue, etc.). These parameters are described in 
Chapter 5. 

4.7.1 Detection Design Objectives 

The objective of detection is to detect vehicle presence and identify gaps in vehicle presence that 
are sufficiently long to warrant terminating the phase. There are many objectives of detection design 
that can be characterized with the following statements: 
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1. Identify vehicle presence on a phase. 

2. Extend the phase to serve queued traffic and that which is progressed from upstream 
traffic signals.  

3. Identify gaps in traffic where the phase may be ended and extend the green. 

4. Provide a safe phase termination for high-speed movements by minimizing the chance of 
a driver being in the indecision zone at the onset of the yellow indication. 

The first and fourth objectives are safety related. The first objective addresses expectancy, while 
the fourth specifically addresses the potential crashes as a result of phase termination. The fourth 
objective is achieved by using advance detectors on the approach. The location of these detectors 
can vary and depends on the detection technology used as well as intersection approach speed. The 
safety benefit of this design tends to be more significant on high-speed approaches. The other 
objectives focus on intersection efficiency.  

The second and third objectives are designed to address efficiency. During low volume (late night 
or off-peak) conditions, detection should seek to serve all traffic identified without stopping. In peak 
conditions, green allocation should seek to measure flows and maintain flows that are near saturation 
flow as described in Chapter 3. Detection timing to achieve this objective will be discussed in more 
detail in Chapter 5. 

4.7.2 Detector Operating Modes 

The detection operating mode refers to the way the detection unit measures activity and is set in 
the detection unit. It also affects the duration of the actuation submitted to the controller by the 
detection unit. One of two modes can be used: presence or pulse. The presence mode is typically the 
default mode. 

Pulse Mode 
Pulse mode is used to describe a detector which detects the passage of a vehicle by motion only 

(point detection). This is characterized by a short “on” pulse sent to the controller of 0.10 to 0.15 
seconds duration. The actuation starts with the arrival of the vehicle to the detection zone and ends 
after the pulse duration. This mode is typically used when the detectors are located upstream of the 
stop line and the associated detector channel operates in the locking mode.  

Presence Mode 
Presence mode is used to measure occupancy and the actuation starts with the arrival of the 

vehicle to the detection zone and ends when the vehicle leaves the detection zone. Thus, the time 
duration of the actuation depends on the vehicle length, detection zone length, and vehicle speed.  

Presence mode measures the time that a vehicle is within the detection zone 
and will require shorter extension (or gap) timing with its use.  

Presence mode is typically used with long-loop detection located at the stop line. In this 
application, the associated detector channel in the controller is set to operate in the non-locking mode 
(see next section). In this mode, the delay or extend parameters in the controller (described in detail 
in Chapter 5) can be used to modify the call start and end times. Alternatively, the delay or extend 
functions in the detection unit could also be used to adjust the start and end time of the actuation. The 
combination of presence mode operation and long-loop detection typically require a small passage 
time value to maintain efficiency. This characteristic tends to result in an operational benefit through 
efficient queue service.  

Modifiers to the detector settings are commonly handled in the controller. This 
has increased in popularity because it provides a single location for 
information on all phases at the intersection.  
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4.7.3 Controller Memory Modes 

Controller memory modes refer to the controller’s ability to “remember” (i.e., retain) a detector 
actuation. One of two modes can be used: non-locking or locking. This mode is set in the controller 
for each of its detector channel inputs. It dictates whether an actuation received during the red 
interval (and optionally, the yellow interval) is retained until the assigned phase is served by the 
controller. All actuations received during the green interval are treated as non-locking by the 
controller. The non-locking mode is typically the default mode. 

Non-locking Mode 
In the non-locking mode, an actuation received from a detector is not retained by the controller 

after the actuation is dropped by the detection unit. The controller recognizes the actuation only 
during the time that it is held present by the detection unit. In this manner, the actuation indicates to 
the controller that a vehicle is present in the detection zone and the controller converts this actuation 
into a call for service. This mode is typically used for phases that are served by stop line detection. It 
allows permissive movements (such as right-turn-on-red) to be completed without invoking a phase 
change. In doing so, it improves efficiency by minimizing the cycle time needed to serve minor 
movement phases. Non-locking mode is not typically used with pulse detection due to an inability to 
detect vehicle presence after the pulse duration elapses.  

Locking Mode 
In the locking mode, the first actuation received by the controller on a specified channel during 

the red interval is used by the controller to trigger a continuous call for service. This call is retained 
until the assigned phase is serviced, regardless of whether any vehicles are waiting to be served. 
This mode is typically used for the major-road through movement phases associated with a low 
percentage of turning vehicles (as may be found in rural areas). One advantage of using this mode is 
that it can eliminate the need for stop line detection, provided that advance detection is provided and 
that it is designed to ensure efficient queue service. 

4.7.4 Detection Design for High-Speed Approaches 

Detection designs for high speed approaches (speeds greater than 35 mph) have the objective to 
not only service the queue at the beginning of green but also to safely terminate the phase in the 
presence of a conflicting call. Stop bar detection is usually used to clear the queues and the multiple 
upstream detectors are used to safely terminate the phase. For efficient operation, the stop bar 
detector should be programmed as a queue detector so that the stop bar detector is disconnected 
after the queue clears and only the upstream detectors are used to safely terminate the phase. When 
stop bar detectors are not used, volume density functions should be used to provide appropriate 
minimum green time to clear the queues. 

The design of advance detection on high-speed approaches requires special attention. Drivers 
within a few seconds travel time of the intersection tend to be indecisive about their ability to stop at 
the onset of the yellow indication. This behavior yields an "indecision zone" (also known as a 
“dilemma zone”) in advance of the stop line wherein some drivers may proceed and others may stop. 
The location of this zone is shown in Figure 4-18. 
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Figure 4-18 Indecision zone boundaries on a typical intersection approach 
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The indecision zone location has been defined in several ways. 

• Distance from stop line. Some researchers have defined it in terms of distance from the 
stop line (16;17). They define the beginning of the zone as the distance beyond which 90 
percent of all drivers would stop if presented a yellow indication. They define the end of 
the zone as the distance within which only 10 percent of all drivers would stop. The 
distance to the beginning of the zone recommended by Zegeer and Deen corresponds to 
about 5 seconds of travel time. That recommended by ITE increases exponentially with 
speed, ranging from 4.2 to 5.2 s travel time, with the larger values corresponding to higher 
speeds. 

• Travel time. Another definition of the indecision zone boundary is based on observed 
travel time to the stop line. Chang et al. (18) found that 85 percent of drivers stopped if 
they were more than 3 s from the stop line, regardless of their speed. Similarly, they found 
that drivers less than 2 s from the stop line would almost always continue through the 
intersection. 

• Stopping sight distance. A third definition of the beginning of the indecision zone is based 
on safe stopping sight distance (SSD). A method for computing this distance is described 
in Chapter 3 of the AASHTO document, A Policy on the Geometric Design of Highways 
and Streets (19). 

The zone boundaries obtained by these three definitions are compared in Figure 4-19. The 
boundaries based on distance typically have an exponential relationship. Those based on travel time 
have a linear relationship. Based on the trends shown in the figure, the beginning and end of the 
indecision zone tend to be about 5.5 and 2.5 seconds, respectively, travel time from the stop line. 
These times equate to about the 90th-percentile and 10th-percentile drivers, respectively. 
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Figure 4-19 Distance to the beginning and end of the indecision zone 
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For these types of designs, the furthest detector upstream of the stop bar is usually located at the 
beginning of the indecision zone of the approach design speed (85th-percentile approach speed). This 
is usually at a distance of 5 to 5.5 seconds of travel time. Subsequent detectors have a design speed 
of 10 mph lower than the upstream detector. Typically 3 to 4 detectors are used to enable safe 
termination of the high speed approach phase. The detectors are allowed to extend the phase by the 
passage time programmed in the controller or by the extension time on the detector itself (see 
Chapter 5). 

Although the concept of the indecision zone has been known for many years, comprehensive 
research has not been completed to conclude what the appropriate way to address the human factors 
associated with intersection design and signal timing display. The indecision should not be confused 
with the dilemma faced by drivers determining whether there is distance to stop and, if not, to travel 
through the intersection before a conflicting movement receives a green indication. 

4.7.5 Detection Design for Low-Speed Traffic Movements  

Detection design for low speed traffic movements (speeds of 35 mph or less) has a different 
objective compared to the detection design for high speed traffic movements. The primary objective 
of detection on low speed approaches is to call a phase and clear the queue while minimizing delay. 
Due to lower speeds, there is less emphasis on protection from dilemma zone or indecision zone on 
the approach. Hence, some agencies use only stop bar detection for low speed approaches. Stop bar 
detectors are usually operating in the presence mode. This facilitates the primary objective of detector 
calling the phase and clearing the queues. 

4.8 DETECTION APPLICATIONS  
This section presents a series of detection applications. 

4.8.1 Basic Fully-Actuated Design 

This design is based on the following assumptions: 

• A detection zone located at the stop line. 

• The detectors are operating in the presence mode. 

• Non-locking memory is used for the associated detector channel in the controller. 
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• No recall is used for the phase to which the detector is assigned. 

The key element of this design is the determination of detection zone length. The optimal length 
represents a trade off in the desire to avoid both premature gap out and excessive extension of 
green. According to Lin (20), the ideal length of the stop line detection zone is about 80 feet. This 
length allows the passage time setting to be small such that the design is very efficient in detecting 
the end of queue while minimizing the chance of a premature gap-out. However, the installation and 
maintenance of such a long detector is often cost prohibitive and multiple detectors of a shorter length 
are often used. The following guidelines should be used to determine the appropriate length of the 
stop line detection zone: 

• The detection zone should not be smaller than 20 feet. 

• The zone should be positioned such that a queued vehicle cannot stop between its trailing 
edge and the crossroad.  

• The zone should consist of one long detection zone or a series of loops. Other sensors that 
can provide the equivalent length of detection can also be used. 

4.8.2 Volume-Density Design 

This design is based on the following assumptions: 

• One 6-foot detector is located upstream of the stop line. 

• The detector unit is operating in the pulse mode. 

• Locking memory is used for the associated detector channel in the controller. 

• No recall is used for the phase to which the detector is assigned. 

This design is not well-suited to approaches with a significant percentage of turning vehicles 
because these vehicles may unnecessarily submit a call for the through movement phase.  

A key element of this design is the location of the detector. This location should be based on the 
desired maximum allowable headway for the design. Research has shown that maximum allowable 
headways in the range of 1.8 to 2.5 seconds yield the snappiest operation, values of 2.6 to 4.5 
seconds will allow detected vehicles to use the green, but may result in extension of green during low 
flow periods (this is discussed further in Chapter 5). Lower values are more appropriate for higher 
volume conditions.  

The advance detector should be located such that the travel time from the detector to the stop 
line for a vehicle traveling at the 85th percentile speed is equal to the maximum allowable headway. In 
this manner, the green interval is not unnecessarily extended by a vehicle that has crossed the stop 
line (as it is with stop line detection). Based on this principle, the recommended location for the 
detector is listed in Table 4-1 for a range of approach speeds. 

With this design, the passage time setting is equal to the maximum allowable headway (which 
may vary if gap-reduction is used). Guidelines related to the detection design as it relates to signal 
timing are described in Chapter 5 for determining the appropriate minimum green interval. Gap-
reduction is not essential with a maximum allowable headway of 3.0 s but should be considered for a 
maximum allowable headway of 4.0 s. If gap-reduction is used, then the minimum gap should be 
equal to 2.0 s. Guidelines for setting the time before reduction parameter and the time to reduce 
parameter are described in Chapter 5. 
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Table 4-1 Recommended distance between stop line and detector 

Distance between Detector and Stop Line, ft  85th Percentile Approach 
Speed, mph 

3.0 s Max. Allowable Headway 4.0 s Max. Allowable Headway 1

20 90 115 

25 110 145 

30 130 175 2

35 155 205 2

40 180 235 2

45 200 265 2

Notes: 
1 - Use the controller’s gap-reduction feature with a minimum gap 2.0 s. 
2 - Use the controller’s variable initial feature to ensure the minimum green duration is not unnecessarily long 
during low-volume conditions (see Chapter 5, Table 5-3). 
 

4.8.3 Multiple-Detector Design 

This design technique, used by the city of Portland, Oregon, is based on the following 
assumptions: 

• One 6-foot detector is placed at 60 feet (because safe stopping distance ends at 15 mph), 
this is the last detector the vehicle will cross. 

• One 6-foot detector is located at the safe stopping distance upstream of the stop line, based 
on the approach speed; this is the first detector the vehicle will cross.  

• At higher speeds, one or two additional detector(s) is(are) placed between the first advance 
detector and the last detector (at 60 feet). 

• The detectors operate in presence mode. 

• Non-locking memory is used for the associated detector channel in the controller. 

• No recall is used for the phase to which the detector is assigned. 

The first detector registers demand for the vehicles as they approach the stop bar. The second 
detector is used like a speed sieve to determine whether the vehicle can stop safely upon its 
approach to the intersection (based on the safe stopping distance from the second detector. This 
design is well-suited to approaches with a significant percentage of turning vehicles because it is 
likely these vehicles will gap out as the vehicle slows to make the turn at the intersection or upstream 
driveway. This is further illustrated in Figure 4-20. 

4-28



Figure 4-20 Detector location for multiple detector technique (level approach) 

 
Source: City of Portland, Oregon 

 

A key element of this design is the use of detectors and extend values within the controller timing 
to reduce the time between successive vehicles. A sample table of extend values from the City of 
Portland is shown in Table 4-2. 

Table 4-2 Recommended detector locations and timing settings for multiple detector 
technique 

Approach Speed, mph 

Location of 
Advance 
Detector 

(feet) 

Location of 
Second 
Detector 

(feet) 

Location of 
Detector 

Nearest Stop 
Bar (feet) 

Extend (Carryover) 
Value from Upstream 

Detectors (secs)1

25 105 60  0.8 
30 140 60  2.1 
35 183 115 60 1.0 
40 230 130 60 1.6 
45 283 190 115 & 60 1.0 

Notes: 
1 - A minimum gap of 0.5 seconds is used to allow the vehicle to leave the last detector.  
Source: City of Portland 

 

4.8.4 Left-Turn Movements 

The guidelines provided in this section can be used to design the left-turn movement detection 
when this movement has an exclusive lane (or lanes). In general, the detection design for a left-turn 
movement should follow the guidelines offered for through movements, as described previously for 
basic fully-actuated design in Section 4.8.1.  
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Some agencies use an additional detector approximately 100 feet upstream of the stop bar to 
provide some advance notice of a vehicle approaching the intersection. In this case, an extension 
(carryover) setting is provided to allow a vehicle leaving the first advance detector to reach the 
detection zone at the stop bar and a short gap setting is used for the phase (assuming stop bar 
detection in presence mode).  

In cases where the left-turn movement operates in the protected-permissive mode and the 
conflicting through movement phase is on recall, then the stop line detection zone could be set back 
from the stop line one or two vehicle lengths. This technique assumes that one or two vehicles can be 
served at the end of the conflicting through phase. A call for the left-turn phase would only be 
registered if the left-turn queue extends back over the detection zone, in which case there would be 
more vehicles that could clear at the end of the through phase. 

If the left-turn movement operates in the protected-permissive mode and the conflicting through 
movement phase is likely to rest in recall, then the controller’s delay parameter can be used with the 
channel assigned to the left-turn lane detector to minimize unnecessary phase changes. The delay 
value used should range from 3 to 15 seconds, with the larger values used when higher speeds and 
volumes exist on the conflicting approach. Most controllers have a detector switching setting that can 
be used to send calls from left-turn detectors to the adjacent through phases to extend the permissive 
green phase for both movements. 

If the left-turn movement operates in the permissive or protected-permissive mode and the 
adjacent through movement phase is not on recall, then it may be desirable to extend the stop line 
detection zone beyond the stop line. This extension would be intended to minimize the potential for 
stranding a turning vehicle in the intersection at the end of the permissive period. It may also ensure 
that the left-turn movement is detected under low-volume conditions. 

4.8.5 Right-Turn Movements 

The guidelines provided in this section can be used to design the right-turn movement detection 
when this movement has an exclusive lane (or lanes). In general, the detection design for a right-turn 
movement should follow the guidelines offered for through movements, as described previously for 
basic fully-actuated design in Section 4.8.1.  

If the right-turn volume is moderate-to-high and the volume on the intersecting road is relatively 
low (such that many gaps for right-turn-on-red exist), then the controller’s delay parameter can be 
used with the channel assigned to the right-turn lane detector to minimize unnecessary phase 
changes. The delay parameter should also be considered when a conflicting phase is on recall. The 
delay value used should range from 7 to 15 s, with the larger values used when higher speeds and 
volumes exist on the intersecting road. 

If the right-turn volume is high but there are few gaps for right-turn-on-red, then the use of the 
delay parameter may not be appropriate because it may only increase the delay to the right-turning 
vehicles.  
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5.0 BASIC SIGNAL TIMING PROCEDURE AND 
CONTROLLER PARAMETERS 

 
This chapter documents the principles of basic traffic signal timing at an intersection. Signal 

timing is a collection of parameters and logic designed to allocate the right-of-way at a signalized 
intersection. A major focus of this chapter is to describe basic signal timing parameters necessary to 
operate an intersection and guidelines for selecting values for those parameters. The principles 
described in this chapter are generally applicable to all signalized intersections. To maximize the 
usefulness and transferability of the information provided, the chapter uses the terminology defined in 
current traffic signal control standards, such as National Transportation Communications for ITS 
Protocol (NTCIP) Document 1202 (1) and National Electrical Manufacturers Association (NEMA) 
Standards Publication TS 2-2003 (2), with alternative definitions in some cases.  

This chapter contains the following sections: 

5.1 – Terminology and Key Definitions  

5.2 – Modes of Traffic Signal Operation and Their Use 

5.3 – Phase Intervals and Basic Parameters 

5.4 – Actuated Timing Parameters 

5.5 – Volume-Density Features 

5.6 – Detection Configuration and Parameters 

5.7 – Guidelines for Time-Base Controls 

5.1 TERMINOLOGY AND KEY DEFINITIONS 
This section identifies and describes basic terminology used within this chapter. Additional terms 

can be found in the Glossary section of the Manual.  

Actuated Signal Control 
A type of signal control where time for each phase is at least partially controlled by detector 
actuations.   

Call 
An indication within a controller that a vehicle or pedestrian is awaiting service from a 
particular phase or that a recall has been placed on the phase. 

Extend 
A detector parameter that increases the duration of a detector actuation by a defined fixed 
amount.   

Gap Out 
A type of actuated operation for a given phase where the phase terminates due to a lack of 
vehicle calls within a specific period of time (passage time). 

Interval  
The duration of time during which the indications do not change their state (active or off).  
Typically, one or more timing parameters control the duration of an interval.  The pedestrian 
clearance interval is determined by the pedestrian clearance time.  The green interval 
duration is controlled by a number of parameters including minimum time, maximum time, 
gap time, etc. 

Isolated intersection 
An intersection located outside the influence of and not coordinated with other signalized 
intersections, commonly one mile or more from other signalized intersections. 
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Minimum Gap 
A volume density parameter that specifies the minimum green extension when gap reduction 
is used.   

Minimum Green 
A parameter that defines the shortest allowable duration of the green interval. 

Minimum Recall 
A parameter which results in a phase being called and timed for at least its minimum green 
time whether or not a vehicle is present. 

Movement –  
Movements reflect the user perspective.  Movements can also be broken down into classes 
(car, pedestrians, buses, LRT, etc.).  Typical movements are left, through and right. 
Movement is an activity in response to a “go” (green ball, green arrow, walk, white vertical 
transit bar) indication. 

Max Out 
A type of actuated operation for a given phase where the phase terminates due to reaching 
the designated maximum green time for the phase. 

Passage Time (Vehicle Interval, Gap, Passage Gap, Unit Extension) 
A parameter that specifies the maximum allowable duration of time between vehicle calls on 
a phase before the phase is terminated.    

Pedestrian Clearance Interval 
Also generally known as “Flashing Don’t Walk” (FDW). An indication warning pedestrians that 
the walk indication has ended and the don’t walk indication will begin at the end of the 
pedestrian clearance interval. Some agencies consider the pedestrian clearance interval to 
consist of both the FDW time and the yellow change interval.  

Phase 
A timing unit associated with the control of one or more indications.  A phase may be timed 
considering complex criteria for determination of sequence and the duration of intervals. 

Pre-timed control 
A signal control in which the cycle length, phase plan, and phase times are predetermined 
and fixed. 

Queue 
A line of vehicles, bicycles, or persons waiting to be served by a phase in which the flow rate 
from the front of the queue determines the average speed within the queue. Slowly moving 
vehicles or people joining the rear of the queue are usually considered part of the queue. The 
internal queue dynamics can involve starts and stops. A faster-moving line of vehicles is often 
referred to as a moving queue or a platoon. 

Recall 
A call is placed for a specified phase each time the controller is servicing a conflicting phase. 
This will ensure that the specified phase will be serviced again. Types of recall include soft, 
minimum, maximum, and pedestrian.  

Semi-Actuated Control 
A type of signal control where detection is provided for the minor movements only.   

Volume-Density 
A phase timing technique that uses a series of parameters (variable initial, minimum gap, 
time before reduction, time to reduce) to provide alternative, variable settings for the 
otherwise fixed parameters of minimum green and passage time. 
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5.2 MODES OF TRAFFIC SIGNAL OPERATION AND THEIR USE 
Traffic signals operate in either pre-timed or actuated mode or some combination of the two. Pre-

timed control consists of a series of intervals that are fixed in duration. Collectively, the preset green, 
yellow, and red intervals result in a deterministic sequence and fixed cycle length for the intersection.  

In contrast to pre-timed control, actuated control consists of intervals that are called and extended 
in response to vehicle detectors. Detection is used to provide information about traffic demand to the 
controller. The duration of each phase is determined by detector input and corresponding controller 
parameters. Actuated control can be characterized as fully-actuated or semi-actuated, depending on 
the number of traffic movements that are detected.  

Table 5-1 summarizes the general attributes of each mode of operation to aid in the 
determination of the most appropriate type of traffic signal control for an intersection. The attributes of 
the various modes of operation are discussed in additional detail in the following subsections.  

Table 5-1. Relationship between intersection operation and control type.
 Pre-timed Actuated 

Type of 
Operation 

Isolated Coordinated Semi-Actuated
 

Fully Actuated Coordinated 

Fixed Cycle 
Length 

 

Yes Yes No No Yes 

Conditions 
Where 

Applicable 

Where detection 
is not available 

Where traffic is 
consistent, closely 
spaced intersections, 
and where cross 
street is consistent 

Where defaulting 
to one movement 
is desirable, major 
road is posted <40 
mph and cross 
road carries light 
traffic demand 
 

Where detection is 
provided on all 
approaches, isolated 
locations where 
posted speed is >40 
mph 

Arterial where traffic 
is heavy and 
adjacent 
intersections are 
nearby 

Example 
Application 

 Work zones Central business 
districts, interchanges

Highway 
operations 

Locations without 
nearby signals; rural, 
high speed locations; 
intersection of two 
arterials 
 

Suburban arterial 

Key Benefit Temporary 
application 
keeps signals 
operational 

Predictable 
operations, lowest 
cost of equipment 
and maintenance  

Lower cost for 
highway 
maintenance  

Responsive to 
changing traffic 
patterns, efficient 
allocation of green 
time, reduced delay 
and improved safety 

Lower arterial delay, 
potential reduction in 
delay for the system, 
depending on the 
settings 

 

5.2.1 Pre-timed Control 

Pre-timed control is ideally suited to closely spaced intersections where traffic volumes and 
patterns are consistent on a daily or day-of-week basis. Such conditions are often found in downtown 
areas. They are also better suited to intersections where three or fewer phases are needed (3).  

Pre-timed control has several advantages. For example, it can be used to provide efficient 
coordination with adjacent pre-timed signals, since both the start and end of green are predictable. 
Also, it does not require detectors, thus making its operation immune to problems associated with 
detector failure. Finally, it requires a minimum amount of training to set up and maintain. On the other 
hand, pre-timed control cannot compensate for unplanned fluctuations in traffic flows, and it tends to 
be inefficient at isolated intersections were traffic arrivals are random. 
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Modern traffic signal controllers do not explicitly support signal timing for pre-
timed operation, because they are designed for actuated operation. 
Nevertheless, pre-timed operations can be achieved by specifying a maximum 
green setting that is equal to the desired pre-timed green interval and invoking 
the maximum vehicle recall parameter described below.  

 

5.2.2 Semi-Actuated Control 

Semi-actuated control uses detection only for the minor movements at an intersection. The 
phases associated with the major-road through movements are operated as "non-actuated."  That is, 
these phases are not provided detection information. In this type of operation, the controller is 
programmed to dwell in the non-actuated phase and, thereby, sustain a green indication for the 
highest flow movements (normally the major street through movement). Minor movement phases are 
serviced after a call for their service is received.  

Semi-actuated control is most suitable for application at intersections that are part of a 
coordinated arterial street system. Coordinated-actuated operation is discussed in more detail in 
Chapter 6. Semi-actuated control may also be suitable for isolated intersections with a low-speed 
major road and lighter crossroad volume.   

Semi-actuated control has several advantages. Its primary advantage is that it can be used 
effectively in a coordinated signal system. Also, relative to pre-timed control, it reduces the delay 
incurred by the major-road through movements (i.e., the movements associated with the non-
actuated phases) during periods of light traffic. Finally, it does not require detectors for the major-road 
through movement phases and hence, its operation is not compromised by the failure of these 
detectors. 

The major disadvantage of semi-actuated operation is that continuous demand on the phases 
associated with one or more minor movements can cause excessive delay to the major road through 
movements if the maximum green and passage time parameters are not appropriately set. Another 
drawback is that detectors must be used on the minor approaches, thus requiring installation and 
ongoing maintenance. Semi-actuated operation also requires more training than that needed for pre-
timed control.  

5.2.3 Fully-Actuated Control 

Fully-actuated control refers to intersections for which all phases are actuated and hence, it 
requires detection for all traffic movements. Fully-actuated control is ideally suited to isolated 
intersections where the traffic demands and patterns vary widely during the course of the day. Most 
modern controllers in coordinated signal systems can be programmed to operate in a fully-actuated 
mode during low-volume periods where the system is operating in a "free" (or non-coordinated) 
mode. Fully-actuated control can also improve performance at intersections with lower volumes that 
are located at the boundary of a coordinated system and do not impact progression of the system ( ). 4
Fully-actuated control has also been used at the intersection of two arterials to optimize green time 
allocation in a critical intersection control method. 

There are several advantages of fully-actuated control. First, it reduces delay relative to pre-timed 
control by being highly responsive to traffic demand and to changes in traffic pattern. In addition, 
detection information allows the cycle time to be efficiently allocated on a cycle-by-cycle basis. 
Finally, it allows phases to be skipped if there is no call for service, thereby allowing the controller to 
reallocate the unused time to a subsequent phase. 

The major disadvantage of fully-actuated control is that its cost (initial and maintenance) is higher 
than that of other control types due to the amount of detection required. It may also result in higher 
percentage of vehicles stopping because green time is not held for upstream platoons.  
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5.3 PHASE INTERVALS AND BASIC PARAMETERS 
An interval is defined in the NTCIP 1202 standard as “a period of time during which signal 

indications do not change.” Various parameters control the length of an interval depending on the 
interval type. For example, a pedestrian walk interval (the time period during which the Walking 
Person signal indication is displayed) is generally controlled by the single user-defined setting for the 
walk parameter. The vehicular green interval, on the other hand, is generally controlled by multiple 
parameters, including minimum green, maximum green, and passage time.  

This section describes guidelines for setting basic parameters that determine the duration of each 
interval associated with a signal phase. These intervals include: 

• Vehicular Green Interval 

• Vehicle Change and Clearance Intervals  

• Pedestrian Intervals 

Parameters related to these intervals and discussed in this section include minimum green, 
maximum green, yellow-change, red clearance, pedestrian walk, and pedestrian flashing don’t walk 
(FDW). Figure 5-1 depicts the relationship between these parameters and the user group associated 
with each interval that may time during a phase. These intervals time concurrently during a phase. 
Although shown here, signal preemption and priority are addressed in Chapter 9. Additional timing 
parameters related to actuated control (e.g., passage time) may also influence the duration of an 
interval and are discussed in Section 5.4.  

Figure 5-1 Users and the actuated signal timing parameters that determine phase length 
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5.3.1 Vehicular Green Interval 

The vehicular green interval is the time dedicated to serving vehicular traffic with a green 
indication. This interval is defined primarily by the minimum and maximum green parameters in the 
case of an isolated intersection. At an actuated controller, other parameters (e.g., passage time) also 
determine the length of this interval. Those parameters are discussed in Section 5.4. It is also 
possible that the duration of the vehicle green interval may be defined by the length of the associated 
pedestrian intervals.  
 
 Minimum Green 

The minimum green parameter represents the least amount of time that a green signal indication 
will be displayed for a movement. Minimum green is used to allow drivers to react to the start of the 
green interval and meet driver expectancy. Its duration may also be based on considerations of 
queue length or pedestrian timing in the absence of pedestrian call buttons and/or indications. A 
minimum green that is too long may result in wasted time at the intersection; one that is too short may 
violate driver expectation or (in some cases) pedestrian safety. The minimum green interval is shown 
in Figure 5-2, as it relates to other intervals and signal control parameters. Calls placed on the active 
phase during the minimum green have no bearing on the duration of the green interval as the interval 
will time at least as long as the minimum green timer.  

Lin ( ) c5 onducted extensive simulation analysis of fully-actuated controlled intersections to 
determine the effect of minimum green intervals on delay. Through these simulations, he found that 
delay was minimal when the minimum green interval was less than 4 seconds. Delay for the 
intersection under the scenarios studied tended to increase slightly as the minimum green interval 
increased from 4 to 8 seconds. 
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Figure 5-2 Settings that define the duration of a vehicle phase 

 
 

The intent of the minimum green interval is to ensure that each green interval is displayed for a 
length of time that will satisfy driver expectancy. When stop-line detection is not provided, variable 
initial, as described in Section 5.4, should be used to allow vehicles queued between the stop line 
and the nearest detector at the start of green to clear the intersection. In cases where separate 
pedestrian signal displays are not provided, the minimum green interval will also need to be long 
enough to accommodate pedestrians who desire to cross in a direction parallel to the traffic 
movement receiving the green indication. These considerations and the conditions in which each 
applies are shown in Table 5-2. 

 
Table 5-2 Factors considered when setting the minimum green interval 

Considered in Establishing Minimum Green? Phase Stop Line 
Detection? 

Pedestrian 
Button? 

Driver 
Expectancy 

Pedestrian 
Crossing Time 

Queue 
Clearance 

Yes Yes No No Yes 

No Yes Yes No 

Yes Yes No Yes, if actuated 

Through 

No 

No Yes Yes Yes, if actuated 
 

Left-Turn Yes Not applicable Yes Not applicable No 
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To illustrate the use of Table 5-2, consider a through movement with stop-line detection and a 
pedestrian push button. As indicated in the table, the minimum green interval should be based solely 
on driver expectancy. However, if a pedestrian call button is not provided (and pedestrians are 
expected to cross the road at this intersection), the minimum green interval should be based on driver 
expectancy and pedestrian crossing time. 

Minimum Green to Satisfy Driver Expectancy 
The duration of minimum green needed to satisfy driver expectancy varies among practitioners. 

Some practitioners rationalize the need for 15 seconds or more of minimum green at some 
intersections; other practitioners use as little as 2 seconds minimum green. If a minimum green 
parameter is set too low and violates driver expectancy, there is a risk of increased rear-end crashes. 
The values listed in Table 5-3 are typical for the specified combination of phase and facility type. 

Table 5-3 Typical minimum green interval duration needed to satisfy driver expectancy
Phase 
Type 

Facility Type Minimum Green Needed to Satisfy 
Driver Expectancy (Ge), s 

Major Arterial (speed limit exceeds 40 mph) 10 to 15 

Major Arterial (speed limit is 40 mph or less) 7 to 15 

Minor Arterial 4 to 10 

Through 

Collector, Local, Driveway 2 to 10 

Left Turn Any 2 to 5 

 

 Minimum Green for Pedestrian Crossing Time  

The minimum green duration must satisfy pedestrian crossing needs for through phases that are 
not associated with a pedestrian push button but have a pedestrian demand. Under these conditions, 
the minimum green needed to satisfy pedestrian considerations can be computed using Equation 5-1. 
Methodology for computing walk and pedestrian clearance interval durations are provided in Section 
5.3.3. 

PCPWGP +=  (5-1) 

Where:  Gp is the minimum green interval duration needed to satisfy pedestrian crossing time,  

PW is the walk interval duration, and  

PC is the pedestrian clearance interval duration, s (all values in seconds). 

Minimum Green for Queue Clearance  
The duration of minimum green can also be influenced by detector location and controller 

operation. This subsection addresses the situation where a phase has one or more advance 
detectors and no stop-line detection. If this detection design is present, and the added initial 
parameter (as discussed later) is not used, then a minimum green interval is needed to clear the 
vehicles queued between the stop line and the advance detector. The duration of this interval is 
specified in Table 5-4. 
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Table 5-4 Typical minimum green interval duration needed to satisfy queue clearance
Distance Between Stop Line and Nearest 

Upstream Detector, ft 
Minimum Green Needed to Satisfy Queue 

Clearance 1, 2 (Gq), s 

0 to 25 5 

26 to 50 7 

51 to 75 9 

76 to 100 11 

101 to 125 13 

126 to 150 15 

Notes: 
1 - Minimum green values listed apply only to phases that have one or more advance detectors, no stop line 
detection, and the added initial parameter is not used. 
2 - Minimum green needed to satisfy queue clearance, Gq = 3 + 2n (in seconds), where n = number of vehicles 
between stop line and nearest upstream detector in one lane. And, n = Dd / 25, where Dd = distance between the stop 
line and the downstream edge of the nearest upstream detector (in feet) and 25 is the average vehicle length (in feet), 
which could vary by area. 
 

 
If a phase has one or more advance detectors, no stop-line detection, and the added initial 

parameter is used, then the minimum initial interval should equal the minimum green needed to 
satisfy driver expectancy. Timing of minimum greens using the added initial parameter is discussed in 
Section 5.4.  

Maximum Green  

The maximum green parameter represents the maximum amount of time that a green signal 
indication can be displayed in the presence of conflicting demand. Maximum green is used to limit the 
delay to any other movement at the intersection and to keep the cycle length to a maximum amount. 
It also guards against long green times due to continuous demand or broken detectors. Ideally, the 
maximum green will not be reached because the detection system will find a gap to end the phase, 
but if there are continuous calls for service and a call on one or more conflicting phases, the 
maximum green parameter will eventually terminate the phase. A maximum green that is too long 
may result in wasted time at the intersection. If its value is too short, then the phase capacity may be 
inadequate for the traffic demand, and some vehicles will remain unserved at the end of the green 
interval. 

Most modern controllers provide two or more maximum green parameters that can be invoked by 
a time-of-day plan or external input (i.e., Maximum Green 2). As shown in Figure 5-2, the maximum 
green extension timer begins timing upon the presence of a conflicting call. If there is demand on the 
phase that is currently timing and no conflicting calls, the maximum green timer will be reset until an 
opposing call occurs.  

It should be noted that the normal failure mode of a detector is to place a continuous call for 
service. In this case, a failed detector on a phase will cause that phase’s maximum green to time 
every cycle.    

Many modern controllers also provide a feature that allows the maximum green time to be 
increased to a defined threshold after maxing out a phase a certain number of consecutive times (or 
alternatively to select among two or three maximum green values). The maximum green time may 
then be automatically decreased back to the original value after the phase has gapped out a certain 
number of times. The exact methods and user settable parameters for this feature vary by 
manufacturer. 

The maximum green value should exceed the green duration needed to serve the average queue 
and, thereby, allow the phase to accommodate cycle-to-cycle peaks in demand. Frequent phase 
termination by gap out (as opposed to max out) during low-to-moderate volumes and by occasional 
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max out during peak periods is commonly used as an indication of a properly timed maximum green 
duration.  Example values are listed in Table 5-5. 

Table 5-5 Example values for maximum green duration
Phase Facility Type Maximum Green, s 

Major Arterial (speed limit exceeds 40 mph) 50 to 70 1

Major Arterial (speed limit is 40 mph or less) 40 to 60 

Minor Arterial 30 to 50 

Through 

Collector, Local, Driveway 20 to 40 

Left Turn Any 15 to 30 

Note: 
1Range is based on the assumption that advance detection is provided for indecision zone protection. If this type of 
detection is not provided, then the typical maximum green range is 40 to 60 s. 
 

 

Two methods are commonly used to establish the maximum green setting. Both estimate the 
green duration needed for average volume conditions and inflate this value to accommodate cycle-to-
cycle peaks. Both of these methods assume that advance detection for indecision zone protection is 
not provided. If advance detection is provided for indecision zone protection, the maximum green 
setting obtained from either method may need to be increased slightly to allow the controller to find a 
“safe” time to terminate the phase by gap out. 

One method used by some agencies is to establish the maximum green setting based on an 85th 
to 95th percentile probability of queue clearance (6). The procedure requires knowledge of the cycle 
length, or an estimate of its average value for actuated operation. If the cycle length is known, then 
the maximum green setting for a signal phase can be obtained from Table 5-6.  
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Table 5-6 Maximum green duration as a function of cycle length and volume 
Cycle Length, s 

50 60 70 80 90 100 110 120 

Phase 
Volume per 

Lane, 
veh/hr/ln Maximum Green (Gmax) 1, s 

100 15 15 15 15 15 15 15 15 

200 15 15 15 15 16 18 19 21 

300 15 16 19 21 24 26 29 31 

400 18 21 24 28 31 34 38 41 

500 22 26 30 34 39 43 47 51 

600 26 31 36 41 46 51 56 61 

700 30 36 42 48 54 59 65 71 

800 34 41 48 54 61 68 74 81 

Note: 
1Values listed are computed as:  Gmax = (V C)/(1200 n) + 1 where, V = design hourly volume served by subject phase (in 
vehicles per hour); n = number of lanes served by subject phase, and C = cycle length (in seconds). A 15-s minimum 
duration is imposed on the computed values. 

 

 

The values listed are based on the equation shown in the table footnote. Due to the approximate 
nature of this equation, the actual percentage probability of queue clearance varies between the 85th 
and 95th percentiles for the values listed. 

A second method for establishing the maximum green setting is based on the equivalent optimal 
pre-timed timing plan (7). This method requires the development of a pre-timed signal timing plan 
based on delay minimization. The minimum-delay green interval durations are multiplied by a factor 
ranging from 1.25 to 1.50 to obtain an estimate of the maximum green setting (8). 

The maximum green time used for a particular phase is calculated differently for low and high 
levels of saturation. During periods of low volume, when the green phase times rarely reach their 
maximum values, the maximum green time can be set fairly high (up to 1.7 times the calculated 
average time for the phase). This accommodates most fluctuations in vehicle arrival rates. During 
conditions at or near saturation, it is important to set the maximum green times as if they were fixed 
time, equitably allocating the green based on the critical lane volumes as described in Chapter 3.  

To this end, application of the maximum green times show significant disparity in the techniques 
reported for determination of maximum phase time, which ultimately may result in a wide variation of 
cycle lengths at intersections. In many cases, maximum green times are set at one value throughout 
the day and don’t reflect the needs of the intersection during various times of day. In some cases, 
these maximum green time values result in cycle lengths that are too long for efficient operations. 

5.3.2 Vehicular Change and Clearance Intervals 

The intent of the vehicle phase change and clearance intervals is to provide a safe transition 
between two conflicting phases. It consists of a yellow change interval and, optionally, a red 
clearance interval. The intent of the yellow change interval is to warn drivers of the impending change 
in right-of-way assignment. The red clearance interval is used when there is some benefit to providing 
additional time before conflicting movements receive a green indication. 

Yellow Change 
The duration of the yellow change interval is typically based upon driver perception-reaction time, 

plus the distance needed to safely stop or to travel safely through the intersection. 
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A state’s Uniform Vehicle Code directly affects yellow change interval timing, as it determines 
whether a permissive or restrictive yellow law is in place.  

• Permissive Yellow Law: A driver can enter the intersection during the entire yellow 
interval and be in the intersection during the red indication as long as the vehicle entered 
the intersection during the yellow interval. Under permissive yellow law, an all-red 
clearance interval must exist as a timing parameter to ensure safe right-of-way transfer at 
an intersection. This rule is consistent with paragraph 11-202 of the Uniform Vehicle 
Code (9).  

• Restrictive Yellow Law: There are two variations of this law (10). In one variation, a 
vehicle may not enter an intersection when the indication is yellow unless the vehicle can 
clear the intersection by the end of yellow. This implies that the yellow duration should be 
sufficiently long as to allow drivers the time needed to clear the intersection if they 
determine that it is not possible to safely stop. In the other variation, a vehicle may not 
enter an intersection unless it is impossible or unsafe to stop. With restrictive yellow law, 
the presence of an all-red interval is optional and good engineering judgment should be 
applied. 

Due to the varying interpretations of the yellow change use, it is encouraged that traffic engineers 
refer to the local and regional statutes for guidance in determining the purpose of the yellow change 
time. 

Red Clearance 

The red clearance interval, referred to in some publications as an all-red interval, is an interval at 
the end of the yellow change interval during which the phase has a red-signal display before the 
display of green for the following phase. The purpose of this interval is to allow time for vehicles that 
entered the intersection during the yellow-change interval to clear the intersection prior to the next 
phase. Note that the use of the “all-red” nomenclature is generally incorrect, as the red clearance 
interval only applies to a single phase, not to all phases. 

The use of a red clearance interval is optional, and there is no consensus on its application or 
duration. Recent research has indicated that the use of a red clearance interval showed some benefit 
to the reduction of red-light-running violations. In these studies, there was a significant reduction in 
right-angle crashes after implementing a red clearance interval. Other research suggests that this 
reduction may only be temporary. A comprehensive study of long-term effects for the Minnesota 
Department of Transportation ( )11 , indicated short-term reductions in crash rates were achieved 
(approximately one year after the implementation), but long-term reductions were not observed, 
which implies that there may not be safety benefits associated with increased red clearance intervals.  

A disadvantage of using the red clearance interval is that there is a reduction in available green 
time for other phases. At intersections where the timing for minor movements is restricted (e.g., to 
split times under coordinated operation (see Chapter 6)), the extra time for a red clearance interval 
comes from the remaining phases at the intersection. In cases where major movements are already 
at or near saturation, the reduction in capacity associated with providing red clearance intervals for 
safety reasons should be accounted for in an operational analysis.  

The MUTCD provides guidance on the application and duration of the yellow change and red 
clearance intervals. It recommends that the interval durations shall be predetermined based on 
individual intersection conditions, such as approach speed and intersection width. The MUTCD 
advises that the yellow change interval should last approximately 3 to 6 seconds, with the longer 
intervals being used on higher-speed approaches. It also advises that the red clearance interval 
should not exceed 6 seconds. A recent survey conducted by The Urban Transportation Monitor 
indicated that practitioners who used a standard red clearance interval used a range from 0.5 to 2.0 
seconds. 

Kell and Fullerton (12) offer the following equation for computing the phase change period (yellow 
change plus red clearance intervals): 
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where: 
 CP = change period (yellow change plus red clearance intervals), s; 
 t = perception-reaction time to the onset of a yellow indication, s; 
 v = approach speed, mph; 
 a = deceleration rate in response to the onset of a yellow indication; 
 g = grade, with uphill positive and downhill negative (percent grade / 100), ft/ft; 
 W = width of intersection, ft; and 
 Lv = length of vehicle. 
 

Equation 5-2 is based on driver reaction time, approach speed, approach grade, and intersection 
width and consists of two terms. The first term (yellow change) represents the time required for a 
vehicle to travel one safe stopping distance, including driver perception-reaction time. This permits a 
driver to either stop at the intersection if the distance to the intersection is greater than one safe 
stopping distance or safely enter the intersection (and clear the intersection under the restrictive 
yellow law) if the distance to the intersection is less than one safe stopping distance. The second 
term (red clearance) represents the time needed for a vehicle to traverse the intersection ([W + Lv]/v). 
Although values will vary by driver population and local conditions, the values of t = 1.0 s, a = 10 ft/s2, 
and Lv = 20 ft are often cited for use in Equation 5-3 ( , ,13 14 15). These values of perception-reaction 
time and deceleration rate are different from those cited in highway geometric design policy 
documents because they are based on driver response to the yellow indication, which is an expected 
condition. They are not based on the longer reaction time necessary for an unexpected (or surprise) 
condition. 

When applying Equation 5-2 to through movement phases, the speed used is generally either the 
85th-percentile speed or the posted regulatory speed limit, depending on agency policy (16). When 
applying Equation 5-2 to left-turn movement phases, the speed used should reflect that of the drivers 
that intend to turn. This speed can equal that of the adjacent through movement but it can also be 
slower as left-turn drivers inherently slow to a comfortable turning speed. Regardless, if the left-turn 
phase terminates concurrently with the adjacent through phase, it will have the same total change 
and clearance interval durations as the through phase because the phases are interlocked by the 
ring-barrier operation. 

The width of the intersection is often defined by local policy or state law. For instance, in Arizona 
intersection width is defined by state law as the distance between prolongations of the curb lines. 
Where intersection width is not defined by local policies, engineering judgment should be used when 
measuring the width of the intersection, W. One approach is to measure from the near-side stop line 
to the far edge of the last conflicting traffic lane along the subject movement travel path. If crosswalks 
are present at the intersection, some agencies have policies to measure from the near-side stop line 
to the far side of the pedestrian crosswalk on the far side of the intersection (for through-movement 
phases) or to the far side of the pedestrian crosswalk across the leg of the intersection which the left-
turn is entering. This is a jurisdiction-wide issue that must be carefully applied.  
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Table 5-7 Duration of change period intervals
 

Width of Intersection, ft 

30 50 70 90 110 

Approach 
Speed, 

mph 

“t + v/2a” 
Terms, s 

(YELLOW) 
“(W+Lv)/v” Term, s (ALL-RED) 

25 3.0a 1.4 1.9 2.5 3.0 3.5 

30 3.2 1.1 1.6 2.0 2.5 3.0 

35 3.6 1.0 1.4 1.8 2.1 2.5 

40 3.9 0.9 1.2 1.5 1.9 2.2 

45 4.3 0.8 1.1 1.4 1.7 2.0 

50 4.7 0.7 1.0 1.2 1.5 1.8 

55 5.0 0.6 0.9 1.1 1.4 1.6 

60 5.4 0.6 0.8 1.0 1.2 1.5 
a The 2003 MUTCD recommends a minimum duration of 3 seconds for the yellow change interval.  

 
The values for the yellow change interval in Table 5-7 are based on negligible approach grade. 

They should be increased by 0.1 second for every 1 percent of downgrade. Similarly, they should be 
decreased by 0.1 second for every 1 percent of upgrade. To illustrate, consider an approach with a 
30 mph approach speed, 70-foot intersection width, and 4-percent downgrade. The estimated change 
period is 5.6 seconds (= 3.2 + (0.1 x 4 + 2.0)).  

States that follow the “restrictive yellow” rule may equate the yellow change interval to the value 
obtained from Equation 5-2 (i.e., the sum of both terms). If a red-clearance interval is needed, its 
value may be set at 0.5 to 2 seconds, as determined by engineering judgment. 

States that follow the “permissive yellow” rule will typically set the yellow change interval equal to 
the value obtained from the first term of Equation 5-2 (i.e., column 2 of Table 5-7), but not less than 
3.0 seconds. This duration will allow drivers that do not have the necessary distance to stop the time 
needed to reach the intersection before the red indication is presented. If a red clearance interval is 
needed, its value is typically based on the second term of Equation 5-2 (i.e., columns 3 through 7 of 
Table 5-7). Some agencies reduce the value of the second term by 1.0 second in recognition of the 
perception-reaction time of drivers in the next conflicting phase to be served (17). 

5.3.3 Pedestrian Timing Intervals 

The pedestrian phase consists of three intervals: walk; pedestrian clearance, commonly referred 
to as flashing don’t walk (FDW); and solid don’t walk. The walk interval typically begins at the start of 
the green interval and is used to allow pedestrians to react to the change to walk at the start of the 
phase and move into the crosswalk. This interval corresponds to the WALKING PERSON indication 
on the pedestrian signal (18). The pedestrian clearance interval follows the walk interval and informs 
pedestrians the phase is ending. During this interval, the UPRAISED HAND indication flashes on the 
pedestrian signal. The solid don’t walk interval follows the pedestrian clearance interval and is 
indicated by a solid UPRAISED HAND indication. This interval is an indication to the pedestrian that 
they should have cleared the crosswalk and opposing vehicle movements could begin. The solid 
don’t walk time is not a programmable parameter in the controller. The duration of the solid don’t walk 
interval is simply the length of the cycle minus the walk and pedestrian clearance intervals.  

Although the illustration in Figure 5-2 does not include a pedestrian phase activation, it does 
show that the pedestrian timers (walk and FDW) would time concurrently with the vehicle intervals if 
there was a pedestrian activation. In the case of Figure 5-2, the pedestrian intervals are shown as 
requiring less time than allowed by the maximum green timer. In this case, if there was continuing 
vehicle demand, the pedestrian indication would show a solid don’t walk until the vehicle phase 
terminated due to lack of demand or the maximum green timer expired. However, if the pedestrian 
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intervals required more time than permitted by the maximum green timer, the vehicle phase would 
continue to time until the pedestrian flashing don’t walk interval finished timing.  

Walk 

The walk interval should provide pedestrians adequate time to perceive the WALK indication and 
depart the curb before the pedestrian clearance interval begins. It should be long enough to allow a 
pedestrian that has pushed the pedestrian push button to enter the crosswalk. In many cases, the 
pedestrian phase will be set to rest in the walk interval to maximize the walk display during a vehicle 
green. Some controllers have a mechanism to specify that the walk interval begins before, or even 
after, the onset of the green interval. The walk interval may be extended in some controllers during 
coordination. A pedestrian recall mode, as discussed in a later section, can be used to eliminate the 
need for a pedestrian to push buttons and ensures that the pedestrian phase is presented each cycle. 

The length of the walk interval is usually established in local agency policy. The MUTCD ( ) 19
indicates that the minimum walk duration should be at least 7 seconds, but indicates that a duration 
as low as 4 seconds may be used if pedestrian volumes are low or pedestrian behavior does not 
justify the need for 7 seconds. Consideration should be given to walk durations longer than 7 seconds 
in school zones and areas with large numbers of elderly pedestrians. In cases where the pedestrian 
push button is a considerable distance from the curb, additional WALK time is desirable. Table 5-8 
summarizes the recommended walk interval durations based on the guidance provided in the 
MUTCD and the Traffic Control Devices Handbook ( )20 . At intersections where older pedestrians are 
present, the MUTCD recommends that the WALK time allows for a pedestrian to reach the middle of 
the street at a 3.0 feet per second walking speed.  

Table 5-8 Pedestrian walk interval duration 
Conditions Walk Interval Duration (PW), s 

High pedestrian volume areas (e.g., school, central 
business district, sports venues, etc.) 

10 to 15 

Typical pedestrian volume and longer cycle length 7 to 10 

Typical pedestrian volume and shorter cycle length 7 

Negligible pedestrian volume 4 

Conditions where older pedestrians are present Distance to center of road divided by 3.0 feet per second 

 

WALK times that allow pedestrians to cross to a wide median before the 
FLASHING DON’T WALK may reduce the potential for pedestrians stopping 
within the median. 

 

Pedestrian Clearance 

The pedestrian clearance interval follows the walk interval. When the pedestrian clearance 
interval begins, pedestrians should either complete their crossing if already in the intersection or 
refrain from entering the intersection until the next pedestrian walk interval is displayed. The MUTCD 
currently stipulates that the pedestrian clearance interval must be calculated assuming the distance 
from the curb to the far side of the opposing travel way, or to a median of sufficient width for 
pedestrians to wait. Note that previous editions of the MUTCD only required the clearance time to be 
as long as needed for the pedestrian to reach the center of the farthest traveled lane. 

Pedestrian clearance time is computed as the crossing distance divided by the walking speed. 
The speed of pedestrians is a critical assumption in determining this parameter. The MUTCD 
recommends a walking speed value of 4.0 feet per second (ft/s). The Americans with Disabilities Act 
(ADA) Accessibility Guidelines for Buildings and Facilities recommended use of 3.0 ft/s. Recent work 
completed by LaPlante and Kaeser has suggested that a speed of 3.5 ft/s be used to calculate the 
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pedestrian clearance (FDW and Yellow) duration for curb to curb clearance and 3.0 ft/s be used for 
the total pedestrian time (WALK, FDW, and Yellow) duration for  top of ramp to far curb clearance. 
The Pedestrian Facilities User Guide (21) recommends a maximum walking speed of 3.5 ft/s. This 
guide also suggests that a slower walking speed should be used in areas where there is a heavy 
concentration of elderly persons or children. A survey by Tarnoff and Ordonez (22) suggests a range 
of 3.0 to 3.5 ft/s is typically used by agencies to compute crossing time for these special-needs 
pedestrians. Pedestrian clearance time for typical pedestrian crossing distances can be obtained from 
Table 5-9. 

 

Table 5-9 Pedestrian clearance time
Walking Speed, ft/s 

3.0 3.5 4.0

Pedestrian Crossing 
Distance, ft 

Pedestrian Clearance Time (PCT), s 

40 13 11 10

60 20 17 15

80 27 23 20

100 33 29 25

Note: 
1 - Clearance times computed as PCT = Dc / vp, where Dc = pedestrian crossing distance (in feet) and vp = 
pedestrian walking speed (in feet per second). 
 

 

 

 

 

 

 In general, agencies use one of two methods to determine the setting for the pedestrian 
clearance parameter. Some agencies require that the pedestrian clearance time conclude with the 
onset of the yellow change interval. This approach provides additional time (equal to the change 
period) for pedestrian clearance—time that is sometimes of benefit to pedestrians who walk slower 
than average. The pedestrian clearance interval duration for this practice is computed using Equation 
5-4. 

PC = PCT  (5-3) 

Other agencies allow a portion of the pedestrian clearance time to occur during the change period 
(i.e., yellow change or yellow change plus red clearance intervals). This practice minimizes the impact 
of pedestrian service on phase duration and allows it to be more responsive to vehicular demand. 
This pedestrian clearance interval duration is computed using Equation 5-5. 

 
)( RYPCTPC +−=  (5-4)

where: 
 PC = pedestrian clearance interval duration, s; 
 PCT = pedestrian clearance time, s; 
 Y = yellow change interval, s; and 
 R = red clearance interval, s (optional). 

 

 
The practice of exclusing the change and clearance intervals may place 
pedestrians at risk if a concurrent permissive left turn movement is receiving a 
yellow and the vehicles from that movement are expected to clear the 
intersection during the yellow interval. Some agencies using flashing yellow 
applications choose to omit the permissive left turn portion of a protected-
permissive left-turn movement during a pedestrian call. 
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The pedestrian clearance time that transpires during the green interval coincides with a flashing 
“DON’T WALK” indication. At the onset of the yellow interval, a steady “DON’T WALK” indication is 
presented. It is noted that some agencies display the flashing “DON’T WALK” until the end of the 
change period. However, the MUTCD (Sections 4E.07 and 4E.10) states that if countdown pedestrian 
signals are used, the pedestrian clearance interval must finish timing before the onset of the yellow 
clearance interval.  

5.4 ACTUATED TIMING PARAMETERS 
Research has shown that the best form of isolated operation occurs when fully-actuated 

controllers are used. Actuated controllers operate most effectively when timed in a manner that 
permits them to respond rapidly to fluctuations in vehicle demand (23). This section describes several 
of the more commonly used settings and parameters that influence phase function or duration in an 
actuated controller, including phase recall, passage time, simultaneous gap, and dual entry. In 
addition, this section discusses the volume-density technique.  

5.4.1 Phase Recalls 

Recall causes the controller to place a call for a specified phase each time the controller is 
servicing a conflicting phase, regardless of the presence of any detector-actuated calls for the phase. 
There are four types of recalls: minimum recall (also known as vehicle recall), maximum recall, 
pedestrian recall, and soft recall. These are specified as phase option parameters in NTCIP 
Document 1202 (24). 

Minimum Recall (Vehicle Recall) 

The minimum recall parameter causes the controller to place a call for vehicle service on the 
phase. The phase is timed at least for its minimum green regardless of whether there is demand on 
the movement. The call is cleared upon start of green for the affected phase and placed upon start of 
the yellow change interval. This may be used where detection has failed. 

Minimum recall is the most frequently used recall mode. It is frequently used for the major-road 
through-movement phases (commonly designated as phases 2 and 6) at semi-actuated non-
coordinated intersections. This use ensures that the controller will always return to the major-road 
through phases regardless of demand on the major-road through phases, thus providing a green 
indication as early as possible in the cycle.  

Maximum Recall 

The maximum recall parameter causes the controller to place a continuous call for vehicle service 
on the phase. It results in the presentation of the green indication for its maximum duration every 
cycle as defined by the maximum green parameter for the phase. When the maximum recall 
parameter is selected for a phase, the maximum green timer begins timing at the beginning of the 
phase’s green interval, regardless of the presence of a conflicting call or lack thereof.  

There are at least three common applications of maximum recall: 

• Fixed-time operation is desired: Each phase is set for maximum recall. The maximum 
green setting used for this application should be equal to the green interval durations 
associated with an optimal fixed time plan. 

• Vehicle detection is not present or is out of service: Maximum recall for a phase without 
detection ensures that the phase serves the associated movement. However, maximum 
recall can result in inefficient operation during light volume conditions (e.g., during night 
times and weekends) and should be used only when necessary. In some of these 
situations, a lower maximum green or MAX 2 (50 to 75% of the typical MAX GREEN 
value) may be desirable. 

• Gapping out is not desired: Maximum recall can be used to prevent a phase from 
gapping out. An example application of this is under coordinated operations where a left 
turn phase is lagging. By setting the lagging left turn phase to maximum recall, the phase 
will time for its maximum duration, allowing the adjacent coordinated phase to also time 
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for its intended maximum duration. This type of operation is typically only used on a time-
of-day basis in conjunction with a particular coordinated plan (see Chapter 6). 

Pedestrian Recall 

The pedestrian recall parameter causes the controller to place a continuous call for pedestrian 
service on the phase, resulting in the controller timing its walk and flashing don’t walk operation. 
Coordination plans may invoke pedestrian calls using a rest in walk command, which dwells in the 
pedestrian walk interval, while awaiting the yield point. 

There are at least two common applications of pedestrian recall: 

• Pedestrian detection is not present or is out of service: Pedestrian recall for a phase 
without pedestrian detection ensures that the phase times pedestrian walk and clearance 
intervals each cycle.  

• High pedestrian demand: Pedestrian recall is sometimes used to activate the Walk and 
Pedestrian clearance intervals for phases and time periods that are likely to have high 
pedestrian demand. This is a common application during periods of high pedestrian 
activity in downtown environments or at intersections near schools as students are 
arriving or leaving school for the day.  

Soft Recall 

The soft recall parameter causes the controller to place a call for vehicle service on the phase in 
the absence of a serviceable conflicting call. When the phase is displaying its green indication, the 
controller serves the phase only until the minimum green interval times out. The phase can be 
extended if actuations are received. This may be used during periods of low traffic when there is a 
desire to default to the major street. 

The most typical application for soft recall is for the major-road through movement phases 
(usually phases 2 and 6) at non-coordinated intersections. The use of soft recall ensures that the 
major-road through phases will dwell in green when demand for the conflicting phases is absent.   

5.4.2 Passage Time 

Passage time, sometimes called passage gap, vehicle extension, or unit extension, is used to 
extend the green interval based on the detector status once the phase is green. This parameter 
extends the Green Interval for each vehicle actuation up to the Maximum Green. It begins timing 
when the vehicle actuation is removed. This extension period is subject to termination by the 
Maximum Green timer or a Force Off. 

Passage time is used to find a gap in traffic for which to terminate the phase, essentially it is the 
setting that results in a phase ending prior to its maximum green time during isolated operation. If the 
passage time is too short, the green may end prematurely, before the vehicular movement has been 
adequately served. If the passage interval is set too long, there will be delays to other movements 
caused by unnecessary extension of a phase (25,) resulting in delay to the other movements at the 
intersection. The appropriate passage time used for a particular signal phase depends on many 
considerations, including: type and number of detection zones per lane, location of each detection 
zone, detection zone length, detection call memory (i.e., locking or nonlocking), detection mode (i.e., 
pulse or presence), approach speed, and whether lane-by-lane or approach detection is used. Ideally, 
the detection design is established and the passage time determined to ensure that the “system” 
provides efficient queue service and safe phase termination for higher speed approaches. Detection 
design procedures that reflect these considerations are described in Chapter 4. 

The passage timer starts to time from the instant the detector actuation is removed. A subsequent 
actuation will reset the passage timer. Thus, the mode of the detector, pulse or presence, is 
extremely important in setting the passage time. The pulse mode essentially measures headways 
between vehicles and the passage time would be set accordingly. The speed of the vehicles crossing 
the detectors and the size of the detectors is an important consideration in determining passage time 
when using presence mode. Longer passage times are often used with shorter detectors, greater 
distance between the detector and stop line, fewer lanes, and slower speeds.  
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When the passage timer reaches the passage time limit, and a call is waiting for service on a 
conflicting phase, the phase will terminate, as shown in Figure 5-3. When this occurs, it is commonly 
termed as a “gap out”. In the figure, vehicle calls extend the green time until the gap in detector 
occupancy is greater than the passage time. In this example, presence detection is assumed.  

Research by Tarnoff suggests that the vehicle extension interval is one of the most important 
actuated controller settings, but the variety of techniques for determining proper settings suggest that 
there is either a lack of knowledge on the availability of this information or disagreement with the 
conclusions presented (26).  

Figure 5-3 Application of passage time 

 
 
 

The objective when determining the passage time value is to make it large enough to ensure that 
all vehicles in a moving queue are served but to not make it so large that it extends the green for 
randomly arriving traffic. This objective is broadened on high-speed approaches to ensure the 
passage time is not so large that the phase cannot be safely terminated. 

Many professionals believe that keeping one lane of traffic (in a left turn or a minor street) moving 
in deference to a major street with multiple lanes results in inefficient operation. Research has shown 
that measuring flow rates across lane groups and comparing them with the potential demand at an 
approach may provide improved decision making within the signal control logic. 

The guidelines provided in this section are based on the assumption that non-locking memory is 
used and that one source of detection is provided (per lane) for the subject signal phase. This source 
of detection could consist of one long detector loop at the stop line, a series of 6-foot loops that are 
closely spaced and operate together as one long zone of detection near the stop line, or a single 6-
foot loop located at a known distance upstream of the stop line (and no detection at the stop line). As 
discussed in Chapter 4, passage time is a design parameter for detection designs that include 
multiple detectors for the purpose of providing safe phase termination (i.e., indecision zone 
protection). The passage-time value for this application is inherently linked to the detection design 
and should not be changed from its design value. 
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Passage time defines the maximum time separation that can occur between vehicle calls without 
gapping out the phase. When only one traffic lane is served during the phase, this maximum time 
separation equals the maximum allowable headway (MAH) between vehicles. Although the maximum 
time separation does not equal the maximum allowable headway when several lanes are being 
served, the term "MAH" is still used and it is understood that the "headway" represents the time 
interval between calls (and not necessarily the time between vehicles in the same lane). 

Figure 5-4 illustrates the relationship between passage time, gap, and maximum allowable 
headway for a single-lane approach with one detector. This relationship can be used to derive the 
following equation for computing passage time for presence mode detection. Gap as shown in this 
figure is the amount of time that the detection zone is unoccupied. 

(5-5) 
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where, 
 PT = passage time, s; 
 MAH = maximum allowable headway, s; 
 va = average approach speed, mph; 
 Lv = length of vehicle (use 20 ft); and 
 Ld = length of detection zone, ft. 
 
Figure 5-4 Relationship between passage time, gap, and maximum allowable headway 

 

 
 

If Equation 5-3 is used with pulse-mode detection, then the length of vehicle Lv and the length of 
detector Ld equal 0.0 ft, and the passage time is equal to the MAH.  

The duration of the passage time setting should be based on three goals (27):   

1. Ensure queue clearance. The passage time should not be so small that the resulting 
MAH causes the phase to have frequent premature gap-outs (i.e., a gap-out that occurs 
before the queue is fully served). A premature gap-out will leave a portion of the stopped 
queue unserved and, thereby, lead to increased delays and possible queue spillback. If 
the queue is extraordinarily long and cannot be accommodated without creating a cycle 
length that is longer than desirable, this goal may not apply. 

2. Satisfy driver expectancy. The passage time should not be so large that the green is 
extended unnecessarily after the queue has cleared. Waiting drivers in conflicting phases 
will become anxious and may come to disrespect the signal indication.  

3. Reduce max-out frequency. The passage time should not be so large that the resulting 
MAH causes the phase to have frequent max-outs. A long MAH would allow even light 
traffic volumes to extend the green to max-out. Waiting drivers in higher-volume 
conflicting phases may be unfairly delayed. 

Research by Tarnoff and Parsonson (28) indicates that there is a range of passage times within 
efficient intersection operations. This range extends from about 1 to 4 seconds for presence mode 
detection, with lower values being more appropriate under higher volume conditions. Values outside 
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this range tend to increase delay. These passage times correspond to MAH values in the range of 2.0 
to 4.5 seconds, depending on detection zone length and location. 

Based on the previous discussion, the following MAH values are recommended for use with 
Equation 5-3 to determine passage time: 

• Gap reduction not used:  MAH = 3.0 s 

• Gap reduction used:  MAH = 4.0 s  

The recommended MAH values may be increased by 0.1 s if the approach is on a steep upgrade 
and by 1.0 seconds if there is a large percentage of heavy vehicles.  

The passage time computed from the recommended MAH values for a range of speeds and 
detection zone lengths is provided in Table 5-10 for presence mode detection. It is critical that the 
relationship of passage time to vehicle speed, detector length, and detector location be considered.  

Table 5-10 Passage time duration for presence mode detection
85th Percentile Approach Speed, mph 1

25 30 35 40 45 

Maximum 
Allowable 

Headway, s 

Detection 
Zone 

Length, ft 
Passage Time (PT), s 

6 2.2 2.3 2.4 2.5 2.6 

15 1.9 2.1 2.2 2.3 2.4 

25 1.6 1.8 2.0 2.1 2.2 

35 1.3 1.6 1.8 1.9 2.1 

45 1.0 1.3 1.6 1.7 1.9 

55 0.7 1.1 1.3 1.6 1.7 

65 0.4 0.8 1.1 1.4 1.5 

3.0 

75 0.1 0.6 0.9 1.2 1.4 

6 3.2 3.3 3.4 3.5 3.6 

15 2.9 3.1 3.2 3.3 3.4 

25 2.6 2.8 3.0 3.1 3.2 

35 2.3 2.6 2.8 2.9 3.1 

45 2.0 2.3 2.6 2.7 2.9 

55 1.7 2.1 2.3 2.6 2.7 

65 1.4 1.8 2.1 2.4 2.5 

4.0 

75 1.1 1.6 1.9 2.2 2.4 

Note: 
1 - Average approach speed is computed as 88 percent of the 85th percentile approach speed. 

 

5.4.3 Simultaneous Gap 

Simultaneous gap defines how a barrier is crossed when a conflicting call is present. If enabled, it 
requires all phases that are timing concurrently to simultaneously reach a point of being committed to 
terminate (by gap-out, max-out, or force-off) before they can be allowed to jointly terminate. If 
disabled, each of the concurrent phases can reach a point of being committed to terminate separately 
and remain in that state while waiting for all concurrent phases to achieve this status. Simultaneous 
gap out should be enabled when advance detection is used to provide safe phase termination. 
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5.4.4 Dual Entry 

The dual (double) entry parameter is used to call vehicle phases that can time concurrently even 
if only one of the phases is receiving an active call. For example, if dual entry is active for Phases 2 
and 6 and Phase 1 receives a call but no call is placed on Phase 6, Phase 6 would still be displayed 
along with Phase 1. The most common use of dual entry is to activate the parameter for compatible 
through movements. If the dual entry parameter is not selected, a vehicle call on a phase will only 
result in the timing of that phase in the absence of a call on a compatible phase.  

5.5 VOLUME-DENSITY FEATURES 
Volume-density features can be categorized by two main features: gap reduction and variable 

initial. These features permit the user to provide variable alternatives to the otherwise fixed 
parameters of passage time (gap reduction) and minimum green (variable initial). Gap reduction 
provides a way to reduce the allowable gap over time, essentially becoming more aggressive in 
looking for an opportunity to end the phase. Variable initial provides an opportunity to utilize cycle by 
cycle traffic demand to vary the minimum time provided for a phase. These features increase the 
efficiency of the cycle with the fluctuations in demand, which can result in lower delay for users at the 
intersection.  

5.5.1 Gap Reduction 

The gap reduction feature reduces the passage time to a smaller value while the phase is green. 
Initially, the gap sought between actuations is the passage time value. Then, after a specified time 
(Time Before Reduction), the passage timer is reduced to a minimum gap using a gradual reduction 
over a specified time (Time To Reduce). This functionality is achieved by programming the following 
controller parameters: time before reduction, time to reduce, and minimum gap. Their relationship is 
shown in Figure 5-5. 

Figure 5-5 Use of volume-density to change the extension time
 

 

 
 

The time-before-reduction parameter establishes the time that is allowed to elapse after the 
arrival of a conflicting call and before the extension timer limit is reduced. This period begins when the 
phase is green and there is a serviceable call on a conflicting phase. Once the time-before-reduction 
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period expires, the extension timer limit is reduced in a linear manner until the time-to-reduce period 
expires. Thereafter, the extension timer limit is set equal to the minimum-gap parameter. Like the 
Passage Time, this parameter extends the green interval by up to the Minimum Gap time for each 
vehicle actuation up to the Maximum Green. It begins timing when the vehicle actuation is removed. 
This extension period is subject to termination by the Maximum Green or a Force Off. 

The gap-reduction feature may be desirable when the phase volume is high and it is difficult to 
differentiate between the end of the initial queue and of the subsequent arrival of randomly formed 
platoons. This feature allows the user to specify a higher passage time at the beginning of a phase 
and then incrementally reduce the passage time as a phase gets longer and the delay to conflicting 
movements increases.  

With gap reduction, a MAH of 2.0 seconds is recommended for use with Equation 5-3 to 
determine the minimum gap. This MAH may be increased by 0.1 second if the approach is on a steep 
upgrade, and by 1.0 second if there is a large percentage of heavy vehicles.  

If Equation 5-3 is used with pulse-mode detection, then the length of vehicle Lv and the length of 
detector Ld equal 0.0 ft, and the minimum gap is equal to the MAH.  

The minimum gap is computed and shown in Table 5-11 using the recommended MAH values for 
a range of speeds and detection zone lengths provided for presence mode detection.  

Table 5-11 Minimum gap duration for presence mode detection
85th Percentile Approach Speed, mph 1

25 30 35 40 45 

Maximum 
Allowable 

Headway, s 

Detection 
Zone 

Length, ft 
Minimum Gap, s 

6 1.2 1.3 1.4 1.5 1.6 

15 0.9 1.1 1.2 1.3 1.4 

25 0.6 0.8 1.0 1.1 1.2 

35 0.3 0.6 0.8 0.9 1.1 

45 0.0 0.3 0.6 0.7 0.9 

55 0.0 0.1 0.3 0.6 0.7 

65 0.0 0.0 0.1 0.4 0.5 

2.0 

75 0.0 0.0 0.0 0.2 0.4 

Note: 
1 - Average approach speed is computed as 88 percent of the 85th percentile approach speed. 

 
 

A number of different policies may be employed in determining the value of time-before-reduction. 
An example policy is to make the time-before-reduction setting equal to the minimum green interval 
and the time-to-reduce setting equal to half the difference between the maximum and minimum green 
intervals (29). This guidance is illustrated in Table 5-12. 
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Table 5-12 Gap reduction parameter values 
Maximum Green, s 

20 25 30 35 40 45 50 55 60 65 70 

Minimum 
Green 

Interval, s 

Time Before 
Reduction 1, s 

Time To Reduce, s 

5 10 8 10 13 15 18 20 23 25 28 30 33 

10 10 5 8 10 13 15 18 20 23 25 28 30 

15 15 N/A 5 8 10 13 15 18 20 23 25 28 

20 20 N/A N/A 5 8 10 13 15 18 20 23 25 

Notes: 
1 - Time before reduction should always be 10 s or more in length. 
N/A - Gap reduction is not applicable to this combination of minimum and maximum green settings. 
 

 

5.5.2 Variable Initial 

Variable initial is used in some cases to ensure that all vehicles queued between the stop line and 
the nearest upstream detector are served. Variable initial uses detector activity to determine a 
minimum green. Vehicles arriving on red that are not able to reach the upstream detector due to a 
standing queue will be detected and will extend the green by an amount sufficient to allow them to be 
served using the passage time. This feature is applicable when there are one or more advance 
detectors, no stop-line detection, and wide fluctuations in traffic volumes between peak and off-peak 
hours. Variable initial timing is achieved by programming the following controller parameters: 
minimum green, added initial, and maximum initial. Their relationship is shown in Figure 5-6. 

Added Initial – This interval times concurrently with the minimum green interval, and is increased 
by each vehicle actuation received during the associated phase yellow and red intervals. The initial 
green time portion is the greater of the minimum green or added initial intervals. The Added Initial 
cannot exceed the Maximum Initial (Figure 5-6). 

Maximum Initial – This is the maximum period of time for which the Added Initial can extend the 
initial green period. The Maximum Initial can not be less than the Minimum Green (Figure 5-6). 
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Figure 5-6 Use of Added Initial to modify minimum green 
 

 
 
 

As with other volume-density parameters, there are varying policies that may be employed in 
determining the values of maximum-initial and added-initial. Generally, the maximum initial setting 
should be determined using the calculation for minimum green for queue clearance shown in Section 
5.3.1.  

A common policy for selecting the added-initial parameter is to set this value at approximately 2.0 
seconds per actuation if the phase serves only one traffic lane, 1.5 seconds per actuation if it serves 
two traffic lanes, and 1.2 seconds per actuation if it serves three or more lanes. Slightly larger values 
can be used if the approach has a significant upgrade or a significant number of heavy trucks. Bicycle 
traffic may also warrant higher values depending on the intersection width. Some agencies have 
developed more specific calculations for determining the added initial parameter. For example, the 
Los Angeles Department of Transportation uses Equation 5-4 to calculate the added initial setting. 
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where, 
 AI = added initial, s; 
         MI =  maximum initial, s. 

5.6 DETECTION CONFIGURATION AND PARAMETERS 
Traffic signal controllers have several settings that can be used to modify the vehicle actuations. 

Traditionally, this functionality was available only in the detection unit that served as an interface 
between the vehicle detector and the signal controller. Its implementation in the controller unit has 
streamlined the signal timing process and can duplicate functionality that may be in the detection unit. 

5-25 



The parameters discussed in this section include: delay, extend, call, and queue. The latter two 
parameters are actually elements of the detector options in NTCIP Document 1202 (30). 

5.6.1 Delay 

A delay parameter can be used to postpone a vehicle actuation for a detector input on a phase. By 
using a delay timer, an actuation is not made available until the delay timer expires and the actuation 
channel input is still active (i.e., the detection zone is still occupied). Once an actuation is made 
available to the controller, it is continued for as long as the channel input is active. Application of the 
delay timer is illustrated in Figure 5-7.  
 

Figure 5-7 Application of delay timer 
 

 

 

 

Common applications of a delay parameter on detection include the following: 

• Delay is sometimes used with stop-line, presence mode detection for turn movements 
from exclusive lanes.  For right-turn-lane detection, delay should be considered when the 
capacity for right-turn-on-red (RTOR) exceeds the right-turn volume or a conflicting 
movement is on recall.  If RTOR capacity is limited, then delay may only serve to degrade 
intersection efficiency by further delaying right-turn vehicles.  The delay setting should 
range from 8 to 12 seconds, with the larger values used for higher crossroad volumes 
(31). 
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• If the left-turn movement is protected-permissive and the opposing through phase is on 
minimum (or soft) recall, then delay should be considered for the detection in the left turn 
lane.  The delay setting should range from 3 to 7 seconds, with the larger values used for 
higher opposing volumes (32). In this case, a minimum recall should also be placed on 
the adjacent through phase to ensure that a lack of demand on the adjacent through 
phase does not result in the left-turn movement receiving neither a permissive nor a 
protected left-turn indication.  

• Delay may also be used to prevent an erroneous call from being registered in the 
controller if vehicles tend to traverse over another phase’s detector zone. For example, 
left-turning vehicles often cut across the perpendicular left-turn lane at the end of their 
turning movement. A detector delay coupled with non-locking memory would prevent a 
call from being placed for the unoccupied detector.  

5.6.2 Extend 

The extend parameter is used to increase the duration of the actuation for a detector or phase. 
The extend timer begins the instant the actuation channel input is inactive. Thus, an actuation that is 
one second in duration at the channel input can be extended to three seconds, if the extend 
parameter is set to two seconds. This process is illustrated in Figure 5-8. 

Figure 5-8 Application of extend timer 
 

 

 

 

Extend is typically used with detection designs that combine multiple advance detectors and stop-
line detection for safe phase termination of high-speed intersection approaches.  Extend is used with 
specific upstream detectors to supplement the passage-time parameter, to ensure that these 
detectors can extend the green interval by an amount of time equal to the sum of the passage time 
and call extension.  The magnitude of the extension interval is dependent on the passage time, 
approach speed, and the distance between the subject detector and the next downstream detector.   
Typical values range from 0.1 to 2.0 seconds. 

The objective when used at high-speed approaches is to extend the green interval to ensure that 
a vehicle approaching the intersection has just enough time to reach the next downstream detector 
and place a new call for green extension.  The procedure for identifying when call extension is 
needed and computing the amount of the extension time is specific to the detection design.  Refer to 
the Manual of Traffic Detector Design by Bonneson and McCoy (33) for additional guidance on this 
application. 
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5.6.3 Carryover 

Carryover is a term commonly used for the Extend setting in controller manuals. It is another way 
to describe the time provided for a vehicle to traverse from one detector to the next. 

5.6.4 Call 

The call parameter is used to allow actuations to be passed to the controller for the assigned 
phase when it is not timing a green interval. Actuations received during the green interval are ignored. 
The call parameter is sometimes used with detection designs that include one or more advance 
detectors and stop-line detection. With this design, the call-only parameter is used with the stop-line 
detectors to ignore the actuations these detectors receive during the green interval. The advance 
detectors are used to ensure safe and efficient service during the green interval. When an appropriate 
detection design is combined with this parameter, intersection efficiency can be improved by 
eliminating unnecessary green extension by the stop-line detection. 

5.6.5 Queue 

A detector can be configured as a queue service detector to effectively extend the green interval 
until the queue is served, at which time it is deactivated until the start of the next conflicting phase. 
This functionality is offered as a parameter in most modern controllers. However, if it is not available 
as a parameter, equivalent functionality can be acquired by using the features of many modern 
detector amplifiers. 

This functionality is sometimes used with detection designs that include one or more advance 
detectors and stop-line detection. With this design, the queue service functionality is used to 
deactivate the stop line detection during the green interval, but after the queue has cleared. The 
advance detectors are then used to ensure safe phase termination. When combined with an 
appropriate detection design, this functionality can improve intersection efficiency by eliminating 
unnecessary green extension by the stop-line detection. 

5.7 GUIDELINES FOR TIME-BASE CONTROLS  
Most controllers provide a means to externally apply signal timing parameters by time of day; 

typically these include maximum green, phase omit, and minimum recall on a time-of-day basis. 
Depending on the manufacturer, time-of-day selection of pedestrian omit, maximum recall, pedestrian 
recall, detector switching, overlap omit, additional maximums, alternate walk intervals, and other 
parameters may also be available. The approach specified by NTCIP 1202 for activating phase and 
ring controls invokes a timing pattern that can be selected on a time-of-day basis (34). In NTCIP 
protocol, a timing pattern consists of a cycle length, offset, set of minimum green and maximum green 
values, force off (determined by splits in some cases), and phase sequence. It also includes 
specification of phase parameters for minimum or maximum vehicle recall, pedestrian recall, or phase 
omit. This will be further described in Chapter 6. 

There are a number of controls that can be used to modify controller operation on a time-of-day 
basis. A remote entry to one of these controls will invoke the corresponding parameter. The most 
common time-based controls are maximum green 2 (Max 2), phase omit, and minimum recall. The 
method of activating these controls varies from manufacturer to manufacturer.  

There are two typical uses of phase omit. One use is when a left-turn phase is only needed 
during the peak traffic period. A second use is where a left-turn movement is prohibited during the 
peak period. In this situation, the associated left-turn phase is omitted during the turn prohibition 
period. 

Minimum recall is used primarily on the major-road phase(s) of a fully-actuated, non-coordinated 
intersection. If the volume on the minor road is low only during certain times of the day, minimum 
recall for the major-road phases could be activated during these time periods. 
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6. COORDINATION 
 

This chapter presents the concept of coordination of traffic signals. Coordination is a tool to 
provide the ability to synchronize multiple intersections to enhance the operation of one or more 
directional movements in a system. Examples include arterial streets, downtown networks, and 
closely spaced intersections such as diamond interchanges. This chapter identifies coordination 
concepts using examples from research and practice. It contains four sections. The first section 
provides an overview of coordination including a summary of objectives, the fundamental concepts, 
and expectations of coordination timing. The second section describes the concepts for coordination, 
its effect on time allocation, implementation issues, and time-space diagrams. The third section 
provides guidelines for developing coordination timing plans, and the fourth section describes 
complexities associated with coordinated operations. The intent of this chapter is to provide 
necessary background for the development of timing strategies. 

6.1 TERMINOLOGY 
This section identifies and describes basic terminology used within this chapter.  Additional terms 

can be found in the Glossary section of the Manual.  

Coordination 
The ability to synchronize multiple intersections to enhance the operation of one or more 
directional movements in a system. 

Double Cycle 
A cycle length that allows phases to be serviced twice as often as the other intersections in 
the coordinated system.  This is also referred as a “Half Cycle”. 

Early Return to Green 
A term used to describe the servicing of a coordinated phase in advance of its programmed 
begin time as a result of unused time from non-coordinated phases.    

Force-off 
A point within a cycle where a phase must end regardless of continued demand.  These 
points in a coordinated cycle ensure that the coordinated phases are provided a minimum 
amount of green time. 

Fixed Force-off 
A force-off mode where force-off points cannot move.  Under this mode, non-coordinated 
phases can use unused time of previous phases. 

Floating Force-off 
A force-off mode where force-off points can move depending on the demand of previous 
phases.  Under this mode, non-coordinated phase times are limited to their defined split 
amount of time and all unused time is dedicated to the coordinated phase. Essentially, the 
split time is treated as a maximum amount for the non-coordinated phases. 

Master Clock 
The background timing mechanism within the controller logic to which each controller is 
.referenced during coordinated operations.   

Offset 
The time relationship between coordinated phases defined reference point and a defined 
master reference (master clock or sync pulse). 

Offset Reference Point (Coordination Point) 
The defined point that creates an association between the local clock at a given signalized 
intersection and the master clock.   
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Permissive Period  
A period of time after the yield point where a call on a non-coordinated phase can be serviced 
without delaying the start of the coordinated phase. 

Time-Space Diagram 
A chart that plots the location of signalized intersections along the vertical axis and the signal 
timing along the horizontal axis.  This is a visual tool that illustrates coordination relationships 
between intersections. 

Yield Point 
A point in a coordinated signal operation that defines where the controller decides to 
terminate the coordinated phase. 

6.2 PRINCIPLES OF COORDINATED OPERATION  
The decision to use coordination can be considered in a myriad of ways. There are numerous 

factors used to determine whether coordination would be beneficial.  Establishing coordination is 
easiest to justify when the intersections are in close proximity and there is a large amount of traffic on 
the coordinated street.  The MUTCD provides the guidance that traffic signals within 800 meters (0.5 
miles) of each other along a corridor should be coordinated unless operating on different cycle 
lengths.   

6.2.1 Coordination Objectives 

Coordination is largely a strategic approach to synchronize signals together to meet specific 
objectives. While there are numerous objectives for the coordination of traffic signals, a common 
objective is stated succinctly in the National Report Card: 

The intent of coordinating traffic signals is to provide smooth flow of traffic 
along streets and highways in order to reduce travel times, stops and delay(1).  

A well-timed, coordinated system permits continuous movement along an arterial or throughout a 
network of major streets with minimum stops and delays, which, reduces fuel consumption and 
improves air quality (2).  Figure 6-1 illustrates the concept of moving vehicles through a system of 
traffic signals using a graphical representation known as a time-space diagram. The time-space 
diagram will be described in additional detail in later sections of this chapter.  

The time-space diagram is a chart that plots ideal vehicle platoon trajectories through a series of 
signalized intersections.  The locations of intersections are shown on the distance axis, and vehicles 
travel in both directions (in a two-way street). Signal timing sequence and splits for each signalized 
intersection are plotted along the time axis. It is very important these plots are to scale so that a 
consistency between units can be maintained. The time axis illustrates what motorists on the arterial 
will experience as they travel down the street. Left turns are shown as angled lines that either are 
operated with a concurrent green for the same direction or not. 
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Figure 6-1 Time-Space Diagram of a Coordinated Timing Plan 

 
 
 

The result of signal coordination is illustrated on the time-space diagram above. The start and 
end of green time show the potential trajectories for vehicles on the street.  It is these trajectories that 
determine the performance of the coordination plan. Performance measures include stops, vehicle 
delay, and arterial travel time; they can also include other measures such as changes in delay to 
transit vehicles or existence of spill back queuing between closely spaced intersections. In general, 
effective signal coordination should enable the engineer to meet the objective defined as a part of the 
study or relevant policies associated with the community. While the effectiveness of the coordination 
timing plan is directly related to the performance measures defined from the policy, it is also 
determined by the user experience and their perception of signal displays. Successful coordinated 
signal timing plans are usually characterized by both the audience and the measure: 

• Downtown merchants may favor pedestrian traffic over vehicular traffic; 

• A neighborhood may seek reduced traffic and lower speeds; 

• The state may be interested in traffic volume throughput on state highways; and  

• A transit agency may be concerned with signal delay to buses and/or light rail 
vehicles. 

Ultimately, the perceived effectiveness of a coordination plan will depend upon local 
transportation policies, the elected leadership, relevant stakeholders, and the selected performance 
measures specific to the community. 
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6.2.2 When to Use Coordination 
Numerous factors can be used to determine whether coordination would be beneficial.  

Establishing coordination is easiest to justify when the intersections are in close proximity to one 
another and when traffic volumes between the adjacent intersections are large.  The need for 
coordination can be identified through observation of traffic flow arriving from upstream intersections.  
If arriving traffic includes platoons that have been formed by the release of vehicles from the 
upstream intersection, coordination should be implemented.  If vehicle arrivals tend to be random and 
are unrelated to the upstream intersection operation, then coordination may provide little benefit to 
the system operation. 

Information presented in the FHWA report, Signal Timing on a Shoestring, revealed that using 
both simple and complex procedures worked for identifying intersections for coordination.  In short, 
when intersections are close together (i.e., within ¾ mile of each other) it is advantageous to 
coordinate them.  At greater distances (i.e., ¾ mile or greater), the traffic volumes and potential for 
platoons should be reviewed to determine if coordination would be beneficial to the system 
operations. In both cases, the traffic conditions and the community policies should be considered as a 
part of the decision. 

6.2.3 Fundamentals of Coordination 

With the modern signal controller, coordination is accomplished by adding a layer of logic (that is, 
coordination logic compliments some basic features such as when a phase can begin or end) to the 
basic actuated logic used for isolated signal timing operations (discussed in Chapter 5). In previous 
chapters, the details of the controller settings were limited to those applied at isolated or independent 
intersections (maximum green, pedestrian timing, etc). Signal coordination establishes an additional 
set of time constraints among a series of signalized intersections by establishing a background cycle 
length (on each ring of the phase diagram).  This cycle length includes a series of timers for each 
phase and requires the designation of one phase (in some cases one phase on each ring) as the 
coordination phase. This designation identifies the phase that will be the last (or first depending on 
your outlook) one to receive its allocation of green time. This coordinated phase is distinguished from 
other actuated phases because it always receives a minimum amount of assigned green time. While 
it is possible to have a portion of the coordinated phase be actuated, the important point is that there 
is a non-actuated interval for the designated coordinated phase(s) that is “guaranteed” every cycle for 
the purposes of coordination.   

Figure 6-2 shows the intersection of two one-way streets, which results in a simple intersection 
with just two phases. It also shows the relationship between a phase diagram with movements 
assigned to the indications at the intersection, a ring-and-barrier diagram that illustrates the logic 
used in the controller for phase sequence and to establish the relationship between conflicting and 
complimentary movements, and the time-space diagram which would be used to display the 
relationship between this intersection and others along an arterial or within a street network 
(previously shown in Figure 6-1). This intersection only has one ring within the ring-and-barrier 
diagram and a simple time-space diagram. Phase 2 is identified as the coordinated phase. This 
intersection represents the most basic configuration for a signalized intersection. 
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Figure 6-2  Phase and ring-and-barrier diagrams of intersection of two one-way streets 

 
 

 

In an actuated-coordinated system, the first event in the cycle is the non-coordinated phase, 
which would serve the demand on that phase (in this case, just phase 4). If demand is less than the 
time allocated to that phase, it would gap out, and the remaining time for that movement would be 
reallocated to the coordinated phase (phase 2).  

In Chapter 4, the ring-and-barrier diagram was introduced for a full-movement four-legged 
intersection, where Ring 1 consists of a sequence of phases and Ring 2 consists of the concurrent 
phases for the intersection, while the barrier separates intersecting movements (east-west and north-
south).  Figure 6-3 illustrates Ring 1 of the diagram and provides a graphical example of the phase 
indications for left-turn phasing.  In this example, phase 2 is the coordinated movement, which means 
that phases 3, 4, and 1 all have an opportunity to use portions of their allotted time before phase 2 
begins. If any time allotted for phases 3, 4, or 1 is unused, phase 2 will start before the normal start 
time (commonly referred to as early return to green) and then rest in green until its end point. The 
following sections of this chapter explain in more detail the nuances between different settings that 
affect the coordination relationship. Essentially, this is an additional layer of constraint (coordination 
logic) that can be applied to signalized intersections to improve the operation of a system of traffic 
signals.  
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Figure 6-3  Example of coordination logic within one ring 

 
 

Figure 6-4 shows an example relationship between two rings (rings 1 and 2) at a typical 8-phase 
intersection. As seen in the figure, phase 5 uses less time than 1. As a result, phases 1 and 6 will 
time concurrently before phase 1 ends and phase 2 begins. In the time-space diagram, this 
concurrent operation of phases 1 and 6 is indicated by downward sloping left-to-right red bars, which 
indicate that the southbound movement is able to move through the intersection, but not the 
northbound movement. Additional examples of this are shown in section 6.2.4.   

6-6 
 



 

Figure 6-4 Coordination using two rings 

 
 

 

The effects of coordination at an individual intersection depend on the timing plan and the 
operations of adjacent intersections. The coordination may be beneficial to a vehicle traveling 
between the two intersections, however it may negatively impact a pedestrian or vehicle crossing the 
street, waiting for the signal to provide the right of way. Many of the complaints from citizens related 
to the use of coordination address the restrictions placed that inhibits responsiveness to demand. The 
last section of this chapter describes the complexity of coordination in greater detail.  This will be 
further exacerbated if the cycle length selected is unnecessarily long or the coordination plan is 
operating when traffic volumes are lower than typical (holidays that fall on a weekday). 

6.2.4 Summary 

Coordination applications can range from two signals controlling a diamond interchange, to 
dozens of signals controlling a combination of actuated and fixed time controllers controlling an 
arterial system that bisects a grid network. When applied, coordination strategies should follow the 
policies and resulting objectives for signal timing established by the agency. Once these are defined, 
performance measures can be established to determine whether the application is beneficial. Various 
performance measures can be used to evaluate signal coordination.  Isolated intersection 
performance measures include delay, queue length, and safety; however, performance measures for 
coordinated systems may be slightly different.  Evaluation methods include the number of stops 
reduced for the main street through movements or queue management.  
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Designating the traffic movement with the greatest peak hour demand as the 
coordinated phase is the most common practice. The coordination logic 
provides unused green time for the coordinated phase especially when 
demand for the other movements is low, which can result in fewer stops for the 
traffic movements with greatest demand. This is most typically through major 
street through movement. 

As previously mentioned, other measures of effectiveness include reduced through movement 
and intersection delay, reduced travel times, lower emissions, lower fuel consumption, and 
maximized bandwidth.  The Highway Capacity Manual quantifies some of these measures of 
effectiveness (through movement delay and resulting through-through travel speed), this manual 
does not. Instead, this chapter presents the concepts needed to operate a signal system.  It should 
also be noted that from a system perspective the Highway Capacity Manual procedures are also not 
sensitive to the policy issues discussed here. The effectiveness of the signal system is (and should 
be) based on the policies and expectations for the various agencies.  Measures of effectiveness can 
vary from travel speed, travel times, number of stops, pedestrian safety, pedestrian delay, transit 
efficiency, and overall intersection delay.  In cases of public approval, the number of complaints or 
phone calls can be used as a measure of effectiveness, but may be biased toward a narrow 
perspective. 

As previously described, well-defined objectives should be the starting point of the system 
evaluation.  If an agency is focused on efficiency of automobiles, then the objectives will correspond 
to reduced travel time and delay for a given movement or intersection.  The signal timing will reflect 
the priority given to the coordinated movement and, as a result, the through movement will have a 
higher percentage of the cycle time.  However, if the agency wants to provide a system that is 
focused on moving people, then transit efficiency measures, such as percent on-time, ridership, and 
travel time, should be evaluated.      

Many performance measures are difficult to quantify.  Computer software programs can estimate 
many performance measures, including network delay, emissions, and fuel consumption, that are not 
easily measured in the field.  However, one must be careful in selecting software tools, making sure 
they reflect the capabilities of the control software being used including timing settings and the 
detailed design of the detection system.  Some performance measures are more difficult to quantify, 
which makes it more difficult to evaluate them objectively and to use them explicitly in an optimization 
exercise. These include public perceptions measured by phone calls (positive and negative), 
differences in perception of wasted time when conflicting traffic is present compared to when the 
intersection appears empty, and differences in perception of stops at minor intersections compared to 
major intersections. These measures require the traffic engineer to employ judgment—some might 
call it art—in balancing these less quantifiable measures with the other more scientific measures. 

6.3 COORDINATION MECHANICS 
Three fundamental parameters distinguish a coordinated signal system: cycle length, offset and 

split.  These settings are necessary inputs for coordination. Figure 6-5 shows the cycle length and set 
of splits for an intersection, along with the offset between two intersections and the relationship to the 
master clock. There are several ways these inputs can be interpreted by the controller and thus a 
description of how the inputs are used to develop the relationship between the various intersections is 
provided here.   

6.3.1 Cycle Length  

Cycle length defines the time required for a complete sequence of indications. Cycle lengths must 
be the same for all intersections in the coordination plan to maintain a consistent time based 
relationship. (One exception would be an intersection that “double cycles,” serving the phases twice 
as often as the other intersections in the system.) The cycle length is measured from the deterministic 
point defined by the user.  Coordination occurs most commonly along an arterial at an interchange or 
between at least two signals, but network coordination in downtown or other grid networks is also 
common. Professionals have determined cycle length through a variety of ways.  The guidelines 
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section of this chapter further discusses how to establish the cycle length for a coordinated timing 
plan.   

6.3.2 Yield Point 

The first component of coordination is often referred to as the yield point, but may be better 
defined as the deterministic point.  This point is necessary for coordination to operate because it is a 
point where the controller makes a decision to terminate the coordinated phase. The controller will not 
leave the coordinated phase immediately because it has to confirm there is a conflicting call and time 
some coordinated phase clearance intervals (pedestrian clearance if resting in walk or just the yellow 
and red clearance).  

Most controllers confirm what time-of-day plan should be running at this point in the cycle and 
transition to try to get to the appropriate plan at this point.  It is also at this point that the controller will 
seek to serve the next phase in the sequence that has a call.  In the instance where there is a call on 
any other phase, the coordinated phase would begin to terminate based on coordinated phase dwell 
state (walk or don’t walk) and clearance (yellow and red clearance time) and the next phase would 
receive a green indication based on the demand.  If there is no demand on any other phase, the cycle 
would continue in the coordinated phase until the end of one or more yield periods, or the next 
occurrence of the yield point, where the controller would serve the phases in sequence.  For each 
cycle, the controller decides at the yield point (or later with permissive periods) what phase(s) will 
serve.  

6.3.3 Splits 

Within a cycle, splits are the portion of time allocated to each phase at an intersection.  These are 
calculated based on the intersection phasing and expected demand.  Splits can be expressed either 
in percentages of the cycle or in seconds. Split percentages typically include the yellow and all-red 
associated with the phase; as a result, the green percentage is less than total split for a phase. For 
implementation in a signal controller, the sum of the phase splits must be equal to (or less than) the 
cycle length, if measured in seconds, or 100 percent, if measured as a percent (some traffic signal 
controllers are more finicky about this than others). In traditional coordination logic, the splits for the 
non-coordinated phases define the minimum amount of green for the coordinated phases.   
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Figure 6-5 Cycle Length and Split 

 
 

Figure 6-5 is a time-space diagram that shows a simplification of the signal 
indications for the coordinated and non-coordinated phases. The measured 
split for a phase consists of its green time, yellow change, and red clearance 
times. The cycle length is the sum of time for the complete sequence of 
indications. The measured split may be longer than what is input into the 
controller because of the early return to green. In an actuated-coordinated 
system, the cycle length must be measured from a defined observable point, 
typically the end of the coordinated phase green or beginning of coordinated 
phase yellow. Measuring the cycle length from the observed start of green at 
an actuated coordinated intersection will result in erroneous results because of 
the early return to green that can occur.   

Force-offs 
Force-offs are used in some controllers as an alternate way to control the phase splits.  The 

force-offs are points where non-coordinated phases must end even if there is continued demand. The 
use of force-offs overlays a constraint on all non-coordinated phases to ensure that the coordinated 
phase will receive a minimum amount of time for each cycle.  

In some controllers, this might be less than the pedestrian timing requirements, which offers the 
engineer some flexibility in timing. However, this flexibility comes at the price of potentially losing 
coordination if the controller does not return to the coordinated phase at its assigned time. Losing 
coordination under light traffic or only very occasionally due to pedestrian calls may be an acceptable 
option.   

There are two options for programming force-offs in controllers, fixed or floating.  The fixed force-
off maintains the phase’s force-off point within the cycle.  If a previous non-coordinated cycle ends its 
phase early, any following phase may use the extra time up to that phase’s force-off. This is beneficial 
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if there are fluctuations in traffic demand and a phase needs more green time. One of the outcomes 
of this is that a phase later in the sequence (before the coordinated phase) may receive more than its 
split time (provided the maximum green is not reached). It should be noted that the phase directly 
after the coordinated phase will never have an opportunity to receive time from a preceding phase, 
regardless of the method of force-offs. 

Floating force-offs are limited to the duration of the splits that were programmed into the 
controller. The force-off maintains the non-coordinated maximum times for each non-coordinated 
phase in isolation of one another.  Floating force-offs are more restrictive for the non-coordinated 
phases. If a phase does not use all of the allocated time, then all extra time is always given to the 
coordinated phase.  This is illustrated in Figure 6-6. 

The maximum green timer, if allowed, may also result in the phase not reaching this force-off 
value. In addition to the maximum green timer, a definable controller parameter, known as Inhibit 
Max, may be invoked to prevent the controller from using the maximum green to limit the time 
provided to a phase during coordinated operation.   

Figure 6-6 shows the difference between fixed and floating force-offs.  The first row (“row a”) 
illustrates a scenario where demand exceeds the allotted green time and each phase is terminated at 
the respective force-off points.  The second and third rows (“row b” and “row c”) illustrate the 
concepts of the floating and fixed force-off concepts.  To better illustrate the differences in the two 
concepts, the demand for the phases are different.  In this example, phases 1 and 3 experience a 
demand of 15 seconds (10 seconds shorter than the split time), and phase 4 experiences a demand 
of 40 seconds (15 seconds longer than the split time).   
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Figure 6-6 Fixed and Floating Force-offs 
 

 
In this example phase 2 is the coordinated phase, phases 1 and 3 gap out, and phase 4 maxes 

out due to high demand.  With fixed force-offs, the green time for phase 4 is extended to serve an 
increased demand up to the force-off point; in this case, it receives additional time from phase 3.  The 
coordinated phase is given additional green time due to the previous phase (phase 1) gapping out.  
The green time is not taken from the other phases.  For the same scenario under floating force-offs, 
phase 4 would be forced off even with the higher demand at its split value, 25 seconds.  A Texas 
Transportation Institute report summarizes advantages and disadvantages of fixed force-offs (3): 

• Fixed force-offs are useful to allow use of the time available from phases operating under 
capacity by phases having excess demand, which varies in a cyclic manner. This is the 
case when the phase(s) earlier in the phasing sequence is under capacity more often 
than the other phases. 

• Fixed force-offs may reduce the early return to coordinated phases, which can be helpful 
in a network with closely spaced intersections. An early return to the coordinated phase 
at a signal can cause the platoon to start early and reach the downstream signal before 
the onset of the coordinated phase, which results in poor progression. 

• Fixed force-offs reduce the early return to the coordinated phase which can also be a 
disadvantage. Under congested conditions on the arterial, an early return can result in 
the queue clearance for coordinated phases. Minimizing early return to coordinated 
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phases can cause significant disruption to coordinated operations. This disadvantage can 
be overcome by adjusting the splits and/or offsets at the intersection to minimize 
disruption.  

Permissive Periods  
A permissive period represents a period of time during the cycle in which calls on conflicting 

phases will be accepted. If a vehicle arrives after this period, it will have to wait until the next cycle to 
be served. In older actuated controllers, using coordinated operation, it was necessary to specify the 
permissive periods and force-offs for each phase. These values may be needed for entering signal 
timing plans in traffic controllers as well as traffic simulation models. Newer controllers generally 
automatically calculate (if allowed) the maximum permissive periods for the actuated phases. Care 
should be given to the selection of the coordination mode so as to not limit the benefit of larger 
permissive periods. 

6.3.4 Offsets 

The term offset defines the time relationship, expressed in either seconds or as a percent of the 
cycle length, between coordinated phases at subsequent traffic signals. The offset is dependent on 
the offset reference point, which is defined as that point within a cycle in which the local controller’s 
offset is measured relative to the master clock. It is not necessarily the same as the deterministic 
point (or yield point) within the cycle. The master clock is the background timing mechanism within 
the controller logic to which each controller is referenced during coordinated operations. This point in 
time (midnight in some controllers, user defined in others) is used to establish common reference 
points between every intersection. Each signalized intersection will therefore have an offset point 
referenced to the master clock and thus each will have a relative offset to each other. It is through this 
association that the coordinated phase is aligned between intersections to create a relationship for 
synchronized movements. 

The location of the yield point and the offset reference point describes the 
relationship between the coordination plan at the individual intersection and 
the master clock. 

Different offset reference points are associated with each of the three major controller types: 
NEMA TS1, NEMA TS2, and the Type 170.  The NEMA TS1 references the offset point at the start of 
the coordinated phases (e.g., phases 2 and 6).  The NEMA TS2 references the offset point from the 
start of the green indication of the first coordinated phase (e.g., phases 2 or 6).  The 170 typically 
references the offset point from the start of the coordinated phase yellow.  For each of these 
controller types, software may allow variations of these designations.  Figure 6-7 illustrates the 
differences of each offset reference point on a two-ring diagram. 

Of the three reference points, only the use of the start of coordinated phase yellow is readily 
observable in the field. Under this type of designation, if Intersection B has an offset of 20 seconds 
after Intersection A, one should see Intersection B’s yellow twenty seconds after Intersection A’s 
yellow. For both NEMA designations, the use of start of coordinated phase green as an offset 
reference point is not a fixed point due to the variability in the start of green (early return to green) 
under typical actuated-coordinated operations. However, knowledge of the assigned split for the 
coordinated phase can allow one to calculate the observable fixed point in the cycle. In some cases, 
the start of coordinated phase Flashing Don’t Walk is used as an offset reference point. The majority 
of figures in this manual use the beginning of the coordinated phase yellow as the offset reference 
point, as it is easily observed in the field, although other references (including the HCM) often use 
start of coordinated phase green as the offset reference point. 
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Figure 6-7 Standard Offset Reference Points for Type 170, NEMA TS1, and NEMA TS2 
Controllers 

 

 
 

Once the reference point is identified, the offset is defined as the time that elapses between when 
this reference point occurs at the master clock and when it occurs at the subject intersection. Figure 
6-8 illustrates this concept.  In this example, the offset reference point is at the start of coordinated 
phase yellow, and a cycle length of 100 seconds is used for both intersections. The offset of the 
intersection on the bottom of the figure is zero and thus matches the master clock, which is 
referenced to midnight. The top intersection is set to an offset of 30 seconds. The coordinated phase 
begins its yellow at 30 seconds and 130 seconds (12:00:30 AM and 12:02:10 AM), always 30 
seconds after the bottom intersection. The relative offset is observed by the user from intersection to 
intersection, but this can be different from the offset to the master clock. 
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Figure 6-8 Relationship between the Master Clock, Local Clock, and Offset 
 

 
 

It is important that each intersection have consistent master clocks to enable time-of-day plans 
and preemption to use this as a base point. It is also important to understand that when the cycle 
length is changed, most controllers calculate a new “sync” point based on the master clock reference 
point. The start of the master clock, also known as Pattern Sync Reference, may occur at midnight or 
other times during the early morning, i.e. 1:00 AM or 3:00 AM.  The selected time of day should avoid 
a transition during significant traffic volumes.  This time-based reference requires the controller be 
configured to keep track of subtle issues, such as if the area follows daylight savings time and/or 
when daylight savings time begins and ends.  For example, recent changes in Indiana in 2006 
required all controllers in the state to be reconfigured to acknowledge daylight savings time.  In 2007, 
every traffic controller in the country in states using daylight savings time had to be adjusted to 
account for a different start of daylight savings time.   

6.3.5 Other Coordination Settings 

There are a number of controller settings that may also be known as coordination modes in some 
controllers.  Each controller type uses different coordination modes to give flexibility to the user.  Such 
coordination modes include “Rest in Walk”, “One or more Permissive Periods”, and “Actuated-
Coordinated Mode”.  The modes operate in different manners, but each is designed to provide 
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flexibility towards serving the users’ needs.  Applications of these modes may vary with respect to 
high pedestrian volumes, transit priority, or leading and lagging left turns.   

6.3.6 Pre-timed and Actuated Comparison 

In pre-timed systems, typical of downtown closely spaced intersections, the time relationships are 
“fixed.” Today, most pre-timed systems use actuated controllers with phases recalled to their 
maximum time. In these types of systems, care should be given to the selection of walk times in order 
to provide a pedestrian friendly environment. Some controllers have a “fixed-time” mode which 
maximizes the walk time. 

In systems with actuated phases, these relationships are less rigid and more complex.  The 
“coordinator” uses many parameters to define where those time relationships vary and by how much. 
While the basic timing parameters of coordination are cycle length, splits, force-offs, coordinated 
phases, and offsets; it is very important to understand the complexities of these settings and their 
effect on coordinated actuated operation.  The following section presents the theoretical construct of 
coordination in an attempt to break down the complexities into the basic fundamentals which are 
necessary to implement coordination consistent with the signal timing design undertaken. 

6.4 TIME-SPACE DIAGRAM 
The time-space diagram is a visual tool for engineers to analyze a coordination strategy and 

modify timing plans. The main components in a time-space diagram that are inputs include individual 
intersection locations, cycle length, splits, offset, left turn phasing (on the arterial in the direction of the 
diagram), and speed limit. The phase lengths may be approximations of their duration; in an actuated 
system this changes on a cycle-by-cycle basis. The outputs of a time-space diagram include 
bandwidth (or vehicle progression opportunities), estimates of vehicle delay, stops, queuing and 
queue spillback.  The following sections describe the components of a time-space diagram and how 
the diagram can be used to evaluate signal coordination. 

6.4.1 Basic Concepts (Time, Distance, Speed, and Delay) 

A time-space diagram is drawn with time on the horizontal axis and distance (from a reference 
point) on the vertical axis. The time is relative from the master clock described earlier.  Vehicle 
trajectories are plotted on the time-space diagram and the difference in distance over time (distance 
divided by time, or change in y divided by x) represents the speed or a sloped line on the diagram.  
The trajectories always move left to right along with time, and as shown the distance traversed can be 
either northbound (bottom to top of the diagram) or southbound (top to bottom). Vehicles can have a 
positive or negative slope that indicates the movements on a street network.  Stopped vehicles (no 
change in distance) are shown as horizontal lines. The assumed speed for coordination on the 
corridor may be the speed limit, the 85th-percentile speed, or a desired speed. The resulting speeds 
on the corridor are affected by the presence of other traffic, the signal timing settings, the acceleration 
and deceleration rates of the vehicles, and other elements within the streetscape. The acceleration 
rates are especially important considering the departures of standing queues at intersections.  

Figure 6-9 shows the one-way street described in Figure 6-2 adjacent to another signalized 
intersection. In this diagram, the motorist experiences four different conditions in moving from a stop 
to the progression speed, these are:  

1. Vehicles delayed (no change in distance as time moves forward); 

2. Driver perception--reaction time at the onset of green;  

3. Vehicle acceleration; and 

4. Running speed of the vehicle (often assumed to be the speed limit or an estimated 
progression speed)  
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Figure 6-9 Time-Space Diagram – Basic Concepts 
 

 
 

 

Vehicles on the time-space diagram are shown as trajectories between intersections. Vehicles 
that turn off of the arterial are considered separately from the through-through vehicles depending on 
the analysis. The vertical distance between two trajectories is the headway between vehicles.  

Figure 6-10 shows more detail related to the range of possible trajectories for vehicles at the two 
intersection network described. The representation of the one-way street is continued for simplicity. 
The vehicle trajectories in this figure labeled 1 through 5 are described below: 

1. Vehicle travel (as in Figure 6-10); 

2. Vehicle from mid-block traveling through the downstream intersection; 

3. Vehicle from side street traveling to the downstream intersection, note the vehicle enters 
the arterial link during the red of the upstream intersection because it is on the side street 
turning left; 

4. Vehicle traveling at the progression speed through the intersections; and 

5. Vehicle delayed at the upstream intersection. 
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Figure 6-10 Time-Space Diagram – One-Way Street Operation 
 

 
 

The time-space diagram illustrates the signal phasing for the coordinated phases for each of the 
signalized intersections.  Each signal operates with two phases, with phase 2 as the coordinated 
phase.   

Protected left-turn phases and two-way operation on the arterial street complicates the time-
space diagram slightly. Figure 6-11 shows the additional phases and two-way operation on the 
arterial. A 100-second cycle length is assumed. Bandwidth is shown as the shaded area between the 
intersections. 
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Figure 6-11 Time-Space Diagram – Two-way Street Operation 
 

 
 

As illustrated in Figure 6-11, the left-turn phases result in less time for the arterial phase. Different 
types of phasing impacts the arterial street in various ways. Accommodating left-turning vehicles at 
signalized intersections is a balance between intersection safety, capacity, and signal delay.  

Several traffic flow assumptions are used with time-space diagrams. As stated earlier, time-space 
diagrams typically consider the through movements on the street in deference to the turning traffic 
and other modes on the roadway. The time-space diagram and estimation of traffic flow are 
complicated by the interactions between pedestrians and turning traffic, vehicular interactions at 
midblock driveways, impedance from shared traffic lanes, and other users of the facility. Careful 
consideration of these conditions must be taken into account when using the time space diagram.  

6.4.2 Left-Turn Phasing 

 As a phase times, the utilization of that green depends on the demand in close proximity or 
approaching the stop bar. In cases where traffic demand has not arrived, delaying the through 
movement may be beneficial. A corollary to this is that the traffic platoon from the upstream 
intersection may reach the downstream intersection too early. In either case, lagging the left turn may 
be beneficial to improve progression or make more efficient use of the green time.  

The time-space diagram focuses on the arterial through movements (typically the coordinated 
phases). There are times when there are other concurrent movements occurring with the coordinated 
phase, such as the left turn movements.  Within a time-space diagram, the left-turn movements are 
represented by hatching that is in the same direction as the coordinated phase.  (In previous figures, 
phase 2 is a northbound movement and phase 6 is a southbound movement.)   

There are situations when other movements are assigned to the coordinated phase, such as the 
left turn movements. This may be done within an interchange when a left-turn movement is 
particularly heavy or needs additional time.  
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Figure 6-12 Sequence of Left Turn Phasing as Shown in a Time-Space Diagram 

 
 

As shown in Figure 6-12, the hatching for phase 5 is in the direction of phase 2 vehicle 
trajectories and the hatching for phase 1 is in the direction of phase 6 vehicle trajectories.  When the 
left-turn movements occur at the same time (leading or lagging left turns), the hatching crisscrosses 
to show a period of time where through movements are not possible in either direction.   

Lagging one or both of the left turns along an arterial to promote progression 
is common. Altering the order of the phases in the sequence may improve the 
use of the green provided, i.e. vehicles may arrive on green for their phase at 
the right time.  

Lagging one of the left turns separates the start of the through phase from the start of the left-turn 
phase, which is particularly useful when upstream intersections from either direction are not equally 
spaced or have different offsets. This is demonstrated in Figure 6-13 below. Further discussion and 
examples are provided in Section 6.5. 
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Figure 6-13 Time-Space Diagram Example of Benefits of Lagging Left Turns  

 

 
 

As shown in Figure 6-13, the bandwidth is increased (as compared to Figure 6-11) by lagging the 
left turns for subsequent intersections. The benefits of the lead-lag left-turn phasing are further 
enhanced with protected/permissive lead-lag phasing. By allowing vehicles to turn left during the 
permissive interval, required left-turn green phase time is reduced, which allows more green time for 
the coordinated movements. This technique is especially effective for coordinated arterial signals 
where the progressed platoons in each direction do not pass through the signal at exactly the same 
time. Al Grover recently completed a comprehensive evaluation of the impacts of 
protected/permissive phasing associated with coordinated signal timing in western San Bernardino 
County, California (4). Grover documented a 30- to 50-percent reduction in vehicle delay when 
comparing protected-only to protected/permissive left-turn phasing. 

The Arizona Insurance information association studied lagging left-turn operation in 2002.Tucson, 
AZ, uses a lagging left-turn phase operation throughout the city. A particular benefit of lagging the left 
turn is that with PPLT control, the drivers have an opportunity to find a gap, but are providing an 
opportunity to clear the lane at the conclusion of the permitted phase. The Arizona Insurance 
information association studied this operation in 20025. The study found that Tucson, AZ had lower 
crash rates than the leading left-turn operations in the Phoenix, AZ. Area, and this benefit was 
attributed in part to the use of lagging-left phases.  The City of Tucson uses lagging left-turn phase 
operation throughout the city.  

Application of lagging left turns in conjunction with protected-permitted phasing presents the 
yellow trap to motorists. Understanding of yellow-trap issues is necessary before implementing lead-
lag phasing (6). The “Yellow Trap” is a condition that leads the left-turning driver into the intersection 
when it is possibly unsafe to do so even though the signal displays are correct. During a signal 
indication change from permissive movements in both directions to a lagging protected movement in 
one direction, a yellow trap is presented to the left turning driver whose permissive left-turn phase is 
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terminating. Use of the flashing yellow arrow as described in Chapter 4 alleviates the concerns 
associated with the traditional use of the protected-permitted in the doghouse display. 

6.4.3 Bandwidth 

Bandwidth is described as the amount of time available for vehicles to travel through a system at 
a determined progression speed.  This is an outcome of the signal timing that is determined by the 
offsets between intersections and the allotted green time for the coordinated phase at each 
intersection.  The bandwidth is calculated by the difference between the first and last vehicle 
trajectory that can travel at the progression speed without impedance.   Bandwidth is a parameter that 
is commonly used to describe capacity or maximized vehicle throughput, but in reality it is only a 
measure of progression opportunities. Bandwidth is independent of traffic flows and travel paths and 
for that reason it may not necessarily be used by travelers. In other words, on an arterial with 10 
signalized intersections, a bandwidth solution would be established to allow vehicles to travel through 
the entire system. In reality, one must consider how many vehicles desire to travel through all 
intersections without stopping.    

A few important points to understand related to bandwidth: 

• Bandwidth is different for each direction of travel on the arterial and dependent on the 
assumed speed on the time-space diagram:  

• As additional intersections are added to the system, it is increasingly difficult to 
achieve and measure the impact of an additional signal:  

• During periods of oversaturated conditions, bandwidth solutions may result in poor 
performance, often simultaneous offsets are more effective: and 

• Timing plans that seek the greatest bandwidth increase network delay and fuel 
consumption. 

6.5 TRANSITION LOGIC 
Transition is the process of either entering into a coordinated timing plan or changing between 

two plans. Transition may also be necessary after an event such as preemption or loss of 
coordination due to a pedestrian crossing.  In general, traffic signals do not operate within the same 
pattern parameters and cycle lengths at all times.  The pattern may change during the day due to a 
number of reasons: 

• Time-of-day scheduled changes 

• Manual operator selection 

• Traffic-responsive pattern selection 

• Emergency vehicle, rail-road, or other preemption 

• Adaptive control system pattern selection 

• Corrections to controller clock 

• Pedestrian demand 

• Power loss and restoration 

The time-of-day schedule determines what time a plan will be active.  The simplest schedules 
typically define an a.m., off-peak, and p.m. peak for weekdays and a different set of plans for 
weekends.  However, all controllers have extensive scheduling options that allow users to define 
several dozen plans that can be activated by individual day of week, month, pre-defined holidays, or 
major events.   

When the controller clock reaches a point where it is necessary to change the coordination plan, 
the cycle, split, and offset are changed.  If just the splits are changed, transition is trivial because the 
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controller simply starts using the new splits.  However, if either the offset or cycle change, the 
controller must shift the local offset reference point.  This requires the use of an algorithm that may 
either shorten or lengthen the cycle to make that shift.  That transition algorithm typically operates for 
one to five cycles, depending upon the transition mode selected and how much the cycle needs to be 
shifted.  Consequently, the split durations during the period of transition may be different from either 
the previously defined splits or the new ones. 

For example in the example cycle length plot shown in Figure 6-14, one can see the system runs 
with a fixed background cycle from 6:00 AM to 10:00 PM, with cycle changes at 9:00 AM, 11:00 AM, 
1:00 PM, 3:00 PM, and 7:00 PM.  During each of these plan changes, the controller goes into 
transition, resulting in variable cycle lengths for a couple of cycles to adjust to the new plan.     

Figure 6-14 Daily Cycle Length Fluctuations 

  
 

6.5.1 Example Application of Time Based Coordination Transition 

Traffic signal coordination requires adjacent signals to operate at the same cycle length or at a 
multiple of the cycle length with pre-determined offset and coordination points.  The most common 
method for achieving that specified offset is called time-base coordination, where coordinated signals 
are configured to use the same sync reference time, such as midnight or 3:00 a.m.  When the signal 
is operating in a coordinated mode, it can calculate when the current cycle should begin by effectively 
counting forward from that sync reference time.  The definition of the “start of cycle” depends on the 
offset reference point used by that signal, such as the start of green for a coordinated phase.  The 
transition is initiated to re-align the local zero point (when the cycle begins) with the system sync 
reference time (when a timing plan is initiated).  

As an example of time based coordination, consider a signal that is operating a coordination 
pattern that calls for a 90-second cycle and a 20-second offset, with 12:00 a.m. as the sync reference 
time.  From this information, we know that this signal should begin a 90-second cycle at 20 seconds 
after 3:00 a.m. (3:00:20 a.m.) and every 90 seconds thereafter.  An adjacent signal operating a 
pattern with the same cycle length but an offset of 45 seconds should begin a 90 second cycle at 45 
seconds after 3:00 AM (3:00:45) and every 90 seconds thereafter.  Hence these two signals will 
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always have the same relative offset of 25 seconds (the difference between the two absolute offsets 
of 20 seconds and 45 seconds). 

When a signal controller begins to operate a new coordination pattern, it must establish the cycle 
length and offset of that pattern.  The same applies when re-establishing an offset after a cycle is 
disrupted by preemption or a pedestrian time that exceeds the split time.  By calculating back to the 
sync reference time (12:00 a.m. in the above example), the controller can determine when the offset 
reference point is scheduled to occur within the current cycle.  In general, the next start-of-cycle time 
will be several seconds earlier or a few seconds later than the current cycle start time.  The larger the 
difference between the two cycles and/or the offset values of the two patterns, the longer the 
transition will take.  While central or master-based systems typically communicate the selection of a 
new timing plan to all signals in a group at the same time, the actual transition logic is executed 
independently at each signal, without explicit regard for the state of adjacent signals.  Most controllers 
allow three or four transition modes, which govern the precise details of how the signal 
resynchronizes to the new cycle and offset.  The transition modes differ significantly from one 
controller manufacturer to the next.  Some vendors may also refer to transition as offset seeking, 
offset correction, or coordination correction (7).  The next section gives a brief overview of signal 
timing during transition for the most commonly available transition modes.  However, no matter which 
mode is selected, traffic control can be significantly less efficient during the transition between timing 
plans than it was during coordination.   

6.5.2 Transition Modes 

There are three basic techniques for achieving an offset transition: dwell, lengthen, and shorten. 
The first technique is to stay (dwell) in the coordinated phase(s) until the new offset is achieved.  That 
is, the current cycle is increased in length as needed, with all the additional time being assigned to 
“dwelling” or coordinated phases.  The second technique also expands or adds to the cycle length as 
needed, but distributes that additional time between all phases. The third technique shortens the 
cycle length, taking time from all phases to the extent allowed by their minimum green settings and 
any pedestrian activity during the phase. 

To avoid an excessive cycle length or phase greens that are too short during transitioning, it is 
common for controllers to limit the maximum amount of adjustment that can be made in one cycle.  If 
such a limit is imposed, and it usually is, the signal may not be able to complete a given offset 
transition within one cycle.  Signal controllers also commonly compute their adjustments so that 
transition is completed in a set number of cycles for the worst case scenario, typically a maximum of 
three to five cycles.   

The most common transition modes in signal controllers in the United States include Dwell, Max 
Dwell, Add, Subtract, and Shortway, of which at least two or more modes are offered. (8)  Figure 6-15 
portrays two timing plans where the gray sections indicate when the coordinated phase is green and 
black sections indicate when the coordinated phase is red.  Switching from Plan 1 to Plan 2 entails 
(for simplicity’s sake) no change to the cycle length, but a 24-second shift in the offset.  Figure 6-15 
also shows a separate timeline for each of five types of transition between Plan 1 and Plan 2.  The 
descriptions of these modes discuss the example in Figure 6-15: 

• Dwell – At the next display of green in the coordinated phase, the controller begins 
transition by holding (or dwelling) in this state until the new local zero point is achieved, at 
which time the signal is considered in sync and begins the new timing plan.  As shown in 
Figure 6-15, this adjustment appears as one prolonged cycle. In general, this transition 
mode may result in an uneven allocation of split times during transition.  It can be a very 
helpful mode to use when troubleshooting a coordinated system because it is very 
deterministic. 

• Max Dwell – This modified version of Dwell also adjusts the start of the cycle by 
extending the green time of the coordinated phase.  However, only a limited amount of 
extra green time may be added to each cycle.  The example in Figure 6-15 is constrained 
to add no more than a certain percentage (20% is used in the example) to the cycle 
length, thus two cycles are required to achieve coordination.  
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• Add – This mode synchronizes by shifting the start of the cycle progressively later, by 
timing slightly longer than programmed cycle lengths.  The Add mode increases the 
green time of all phases in the sequence, whereas the Dwell modes add time only to the 
coordinated phase(s).  This is illustrated in Figure 6-15, where Max Dwell and Add both 
increase cycle lengths by a certain percentage (20% again is used), but the allocation of 
extra time to the coordinated phase is less in Add mode because extra green time is 
distributed proportionally amongst all phases.  If a signal is subject to preemption, 
selecting the "Add-only" transition prevents splits on the phases omitted during 
preemption from being reduced during the transition period.  The only real disadvantage 
of this mode is that if a cycle needs to shift one second backwards, it must shift the entire 
cycle forward one second less than the cycle length.  This results in longer cycles during 
the transition period that could potentially cause unexpected storage problems in left turn 
lanes or between closely spaced intersections. 

• Subtract – This mode shifts the start of the cycle progressively earlier, subtracting time 
from one or more phases in the sequence (subject to their minimum green time 
requirements).  As shown in Figure 6-15, Subtract mode decreases all phases in the 
cycle by a certain percentage (20% is assumed) during transition.  Though Subtract 
mode takes three cycles in Figure 6-15, the total transition time of three short cycles is 
equivalent to the time taken by two long cycles during Add transition.  

• Shortway – This mode (also sometimes called Smooth) resynchronizes by applying 
either Add or Subtract transition logic, choosing the mode that presents the “shortest 
path” to achieving sync.  The specific details of this mode, such as its name and the 
exact logic for determining the “shortest path”, can vary significantly from one controller 
vendor to the next. In general this is the default mode on most controllers and is typically 
appropriate to use, unless the signal is subject to preemption. 
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Figure 6-15 Transition Modes 
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6.5.3 Operational Guidelines 

The example shows the effect transition has at a signal.  Adjacent signals that change patterns 
simultaneously may take different amounts of time to complete their offset transitions, depending on 
which method is used and the size of the change required.  In addition to disrupting the progression 
of vehicles between signals, offset transitioning artificially lengthens or shortens phases, leading to 
inefficient use of green time or unusual queuing.  Therefore, it is best to avoid changing patterns 
during congested conditions when the signals need to operate at maximum efficiency.  A peak-period 
pattern is best implemented early to ensure all offset transitioning is completed before the onset of 
peak traffic flows.  Similarly, it is desirable to avoid frequent pattern changes.  

When using the subtract transition technique, the new cycle length may be close to the sum of 
the minimum phase green times (or pedestrian times), meaning only a small adjustment in cycle 
length can be made by shortening.  In this case, it may take many cycles to complete an offset 
transition.  Hence, it is not practical to require the controller to use the subtract technique exclusively. 
To avoid this problem and allow use of the subtract technique when it works well, most controllers 
offer some version of the Shortway method.  If the user selects this option, the controller will 
investigate both add and subtract techniques and automatically choose the one that will complete the 
offset transition (get the signal "in step" or "in sync") most quickly.  Field experience and laboratory 
experiments have shown that Shortway typically provides the least-disruptive effects on traffic than 
any other methods, except in very rare cases.  Many studies have also shown that excessive 
changes to timing plans, in an attempt to match traffic patterns closely and improve performance, can 
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be a detriment because the system never achieves coordination for more than a few minutes at a 
time.  Because of this, it is generally recommended to remain in a coordinated pattern for at least 30 
minutes. 

In locations with low pedestrian demand, it may be desirable to allow 
coordination to be lost when a pedestrian requests service.  Care should be 
taken in using this mode of operation if vehicle progression performance is 
valued; a few pedestrians may cause one or more signals in a coordinated 
system to be in transition almost all of the time. 

6.6 COORDINATION TIMING PLAN GUIDELINES 
This section provides guidelines for selecting coordination settings. The information provided is 

based on established practices and techniques and some acknowledgement that additional research 
is necessary on this subject. The guidelines address the following topics: 

• Coordinated Phase Assignment 

• Cycle Length Selection 

• Split Distribution 

• Offset Optimization 

Each of these topics is addressed separately in the remainder of this section. 

6.6.1 Coordinated Phase Assignment 

At each intersection, a coordinated phase is designated to maintain the relationship between 
intersections. Common practice is to designate the main street through phase as the coordinated 
phase because the coordination logic in most controllers dwells in this phase, and additional time 
provided to what is normally the busiest movement results in better performance. In many cases this 
is phases 2 and 6 for the main street through phases. 

With some applications, assigning a phase other than the major street through movement has 
proven effective. A diamond interchange where queue management strategies are desirable is one 
example where a traffic signal may operate more effectively with such a designation.  

6.6.2 Cycle Length Selection 

Cycle length selection should reflect local objectives and users of the system. Theoretically, 
shorter cycle lengths result in lower delays to potential users. As we consider more users, the cycle 
length may increase and tradeoffs are made between competing objectives. Cycle length selection 
may be completed independently or by considering a system of intersections, but in most cases a first 
step is to assess each intersection for its minimum cycle length.  

Each intersection is assessed for its cycle length requirement as a part of the selection process. 
The result is typically different “optimal” cycle lengths at the intersections. As these intersections are 
aggregated into systems, decisions have to be made regarding whether to include the intersection in 
a systems and which system to include the intersection in. There are cases where intersections are 
included in a coordination strategy which results in longer cycle lengths for the other intersections in 
the system. One should always consider whether intersections with long cycle length requirements 
would better operate independently of the system. 

Cycle length selection is typically based on traffic data that is collected during 
representative periods. In reality, there is a wide variety of volumes that occur 
throughout the operation of the timing strategy. Automated data collection 
would improve the data and ultimately the cycle length selection, particularly at 
sites such as shopping districts that experience heavy weekend traffic that 
often is problematic for agencies to collect. 
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Similarly, because pedestrian timing may influence cycle length, various timing strategies are 
used to ensure effective coordination (8). The effect of pedestrians is further described in the next 
section. A key decision is whether pedestrians will be accommodated within the coordinated cycle 
length. In cases where pedestrian volumes (and the resulting actuations) are low, a pedestrian call 
may not be accommodated within the cycle length which will result in temporary disruption to the 
coordination timing. 

The selection of a cycle length affects intersection capacity and delays.  Longer cycle lengths can 
increase capacity, but only marginally.  Shorter cycle lengths usually result in reduced delays.  Thus, 
the objective of choosing a cycle length is to determine the smallest value of cycle length that 
provides the desired level of vehicular capacity at the intersection while being appropriate for the 
needs of other users such as pedestrians.  

The selection of cycle length should also be influenced by the desired progression speed for a 
roadway.  This is a complicated geometric relationship (to be discussed later) that must be 
recognized when selecting cycle length. Cycle lengths that are too long may increase congestion 
rather than reducing it due to the impacts of long waiting queues on side streets and the arterial alike.  
Cycle lengths also result in establishing relationships between the intersections and in some cases 
some values work better than others due to the time space relationship between the intersections. 

In general, it is preferred that the cycle lengths for conventional, four-legged intersections not 
exceed 120 seconds, although larger intersections may require longer cycle lengths(9). Theoretically, 
intersection capacity increases as the cycle length becomes longer because a smaller portion of the 
time is associated with lost time. However, it is important to recognize that the improvements are 
modest and this assumes that all lanes are operating with saturated flows.  This requires that turn 
bays are long enough to provide sufficient demand to a particular movement; auxiliary lanes are more 
likely to be blocked with longer cycle lengths. As shown in the figure, the change of cycle length from 
two minutes (120 sec.) to three minutes (180 sec.) results in a modest 2 percent increase in capacity.  
This calculation was made by estimating the start-up delay resulting from the signal changes, as it 
relates to the number of times that the signal intervals change during the course of an hour.  The 
message conveyed by the information presented in Figure 6-16 is that one should avoid placing too 
much emphasis on longer cycle lengths as a panacea for congested conditions. 
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Figure 6-16 Cycle Length & Theoretical Capacity 
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Manual Methods 

A manual methodology for determining cycle lengths in a traffic signal network was first 
developed in Los Angeles. The City used a traffic signal timing strategy that was elegantly simple for 
its robust grid system. Most of the signals in the City had permitted left turns with signals at 1/4-mile 
spacing. A 60-second cycle length was selected and the green time was equally distributed to the 
cross street traffic and the arterial. Given these timings and spacing, a vehicle traveling at 30 miles 
per hour would reach the next 1/4-mile signal in 30 seconds, or half of a cycle length. The result is in 
an “alternating” system of offsets between subsequent intersections as shown in Figure 6-17. This 
system permitted two-way coordination along corridors. Under this configuration, the cycle length 
must be carefully selected with regards to the signal spacing and the anticipated or desired speed in 
the system. Although the optimization models used today can provide additional refinement to the 
coordination plans developed using this manual method, this method of alternating offsets serves as 
a reliable default timing strategy.  
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Figure 6-17 Alternating Offsets System of Intersections  

 

 
 

 

Although the simulation and optimization models used today can refine the ways in which signals 
are timed, the alternating offset methods of yesteryear still work well as reliable default timing 
strategies10.  

A similar method of manual coordination timing can be applied to downtown grid networks. This 
method has been deployed in downtown Portland, Oregon by separating intersections into a quarter 
cycle offset pattern. The block spacing in downtown Portland is fairly uniform and relatively short (280 
feet) and the grid is a one-way network.  Each subsequent intersection is offset by a quarter of the 
cycle length, which is selected to progress traffic in both directions. The result is a progression speed 
that is dependent upon the cycle length. This approach establishes a relationship in both directions of 
the grid and permits progression between each intersection in each direction based on the speed that 
is a result of the selected cycle length and the block spacing. As shown in Figure 6-18 cross-
coordination throughout the grid is achieved using the quarter cycle offset method. This approach can 
be adjusted to account for turning movements within the grid and subtle modifications to the 
distribution of green time. 
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Figure 6-18 Quarter Cycle Offset Example Model 

 

 
 

Some agencies have established fixed cycle lengths for various types of streets based on 
intersection spacing, signal phasing, travel speeds, and pedestrian crossing requirements. As an 
example, Harris County, Texas, uses cycle lengths shown in Table 6-1 below (11). 

Table 6-1  Harmonic cycle lengths based on street classification in Harris County, Texas. 
 

Minor Arterial 
(seconds) 

Major Arterial 
(seconds) 

60 90 
70 105 
80 120 
90 135 
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This ensures a consistent approach is taken throughout the system for working between 
individual signals and intersecting corridors. This approach also suggests that the absolute value of 
the cycle length is less important than maintaining a relationship between adjacent systems of traffic 
signals.  

Critical Intersection Methods (Webster, HCM) 
Much of early research regarding cycle length selection recommended evaluating the 

intersections identifying the critical intersection which was typically the intersections with the highest 
demand. A cycle length is established for this location and is selected so that it will be sufficient to 
maintain undersaturated conditions. This fundamental assumption is currently being investigated to 
determine if there are further strategies for dealing with oversaturated conditions.  

The critical intersection approach considers a signalized intersection in isolation to other 
intersections and for this reason may not always yield the optimum cycle length. Most of the analytical 
tools developed for cycle length selection focus on undersaturated flow (12). The tools also do not 
consider the constraints of the intersections beyond the lost time and saturation flow rate. These 
critical intersection approaches to cycle length selection are primarily for isolated intersections and 
are all based on the assumption that vehicular delay is most important. This approach analyzes the 
intersection with the heaviest traffic to determine a minimum cycle length and used that to set the 
remaining intersections. The first step is to consider each intersection as though it is isolated to 
determine the minimum (optimum) cycle length needed at each intersection, as though it were 
isolated(13). The traditional models use Webster’s model to determine optimal cycle length.  Webster 
used computer simulation and field observation to develop a cycle-optimization equation intended to 
minimize delays when arrivals are random. (14) The formula is as follows: 

(6-1) 

Y
LC
−
+

=
0.1

55.1
 

 where: 

 C  = optimum cycle length, (s) 

 Y  = critical lane volume divided by the saturation flow, summed over the phases 

 L  = lost time per cycle, (s). 
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Figure 6-19 Webster’s Optimum Cycle Length  
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In practice, much of the assessment of signalized intersections is completed using the Highway 
Capacity Manual (HCM) procedure on “Signalized Intersections.” The HCM provides few pieces of 
guidance on cycle lengths, but also notes limitations to the methodology. The current methodology 
does not take into account the potential impact of downstream congestion can have on intersection 
operation. Nor does the methodology detect or adjust for turn-pocket overflows and the impacts they 
have on through traffic and intersection operation.  

The HCM offers a quick estimation method for the selection of a cycle length. The formula for 
cycle length estimation is as follows: 

(6-2) 

RS
RSCS

LC
),min(1−

=  

where: 

 C  = cycle length (s), 

 L  = total lost time (s), 

 CS = critical sum of traffic volumes from the critical movement analysis (veh/h), 

 RS = reference sum flow rate = 1,710 · PHF · fa  (veh/h), 

 fa = area type adjustment factor (0.90 if CBD, 1.00 otherwise). 

Primarily, this calculation is intended for planning-level analyses. This equation suggests that as 
the intersection approaches capacity, the cycle length should increase up to a maximum value, which 
the HCM suggests is set by the local jurisdiction (such as 150 seconds). The minimum cycle length 
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suggested for use is 60 seconds. The equation does not explicitly address the pedestrian crossing 
requirements, left turn type and minimum green times necessary to meet driver expectancies. 

 

Figure 6-20 HCM Cycle Length Estimation  
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In both Webster’s and the HCM’s estimation, the sum of the critical lane flows is a representation 
f the demand at the intersection.  The critical lane is defined as the intersection approach with the 
reatest demand of all the approaches that are serviced during a given signal phase.  For example, 
uring the main street phase, on a street with two-way traffic, the critical lane would be the one lane 

n either direction that has the greatest demand.  Y is the sum of the critical lane flows divided by 
900, which is the percent of available intersection capacity that is in demand.  If Y = 1, the 

ntersection is saturated and the equation is no longer applicable. 

The situations where longer cycle lengths degrade intersection performance are a result of 
pecific elements that lead to poor performance. Longer cycle lengths will increase congestion in 
ases such as when:  

• Upstream throughput exceeds downstream link capacity. Long cycles may move more 
vehicles through an intersection than can be handled downstream 

• Turning bay storage is exceeded. Long cycle lengths may cause vehicles in left-turn bays 
to back up into through lanes. In a similar manner, long cycles may cause through traffic 
to back up beyond turn bays, restricting their access 

• Increased variability in actuated green times. Long cycles result in high variability in the 
side street green time used, which may result in poor arrival types at the downstream 
intersection. This is particularly noteworthy when split times exceed 50 seconds (15). 

The delay experienced by a motorist depends on cycle length and volume. Higher volumes 
lways lead to longer delays. Shorter cycle lengths reduce delay, provided they do not result in 
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inadequate intersection capacity. Oversaturated conditions require special considerations, and 
these models are not valid during that range of conditions.  

Network Approaches 
The network approach to cycle length selection considers multiple intersections to determine an 

optimal cycle length. Most applications of network approaches use signal timing optimization models. 
There are a number of computer programs that can be used to assist in selection of a cycle length. 
The Federal Highway Administration's (FHWA's) Traffic Analysis Toolbox describes additional 
resources (http://www.ops.fhwa.dot.gov/trafficanalysistools/toolbox.htm). Three of the more popular 
programs of this type are Synchro, PASSER™ II, and TRANSYT-7F (16). 

These signal timing optimization models consider the network being analyzed and determine an 
optimal solution based on a given set of inputs. The range of cycle lengths is based on the users 
input. The optimization models use the individual intersection characteristics, the volume to capacity 
ratios of each intersection, the link speed, and the distance between the intersections to estimate the 
performance for each individual cycle length and resulting plan. The models make assumptions 
based on the inputs related to the splits and offsets to determine performance measures that can be 
compared to timing policies. Because the models are imperfect a significant amount of effort is 
necessary to take an initially screened plan to a point that can be field implemented. The timing 
policies described previously, the optimization policies, and the criteria for determining which criteria 
to use to select a signal timing plan must be considered prior to and as a part of the optimization 
process.  

A recent FHWA publication devotes a significant number of pages describing various optimization 
software packages available (17), so only the pertinent elements will be described here. The 
optimization models change with new versions of the software and for that reason, the documentation 
is best handled by the individual software producer. Their guidance related to the development of 
timing plans is most important. 

The PASSER program uses the concepts described in Webster’s equation to determine the 
appropriate cycle length. The program uses a hill climbing algorithm to estimate delay at each 
intersection with the cycle length input to further quantify the performance of the system and 
maximize bandwidth using the pre-calculated splits as input to that model. At the optimization stage, it 
can find the cycle length, offsets, and phase sequences that produce maximum two-way progression. 
Essentially, PASSER uses the concepts described in Webster’s equation for selection of cycle length 
and, “after calculating the minimum delay cycle length for all intersections in the arterial street, the 
largest minimum delay cycle length is selected as the shortest cycle length for the system and that 
the longest allowable cycle length should be no more than 10 to 15 seconds longer than the shortest 
allowable cycle length to minimize the excess delay at the non-critical intersections.” (18) 

TRANSYT-7F allows the user to define the performance function used for optimization. 
TRANSYT-7F was initially designed to select signal timings that produce minimum network delay and 
stops. Subsequent modifications added the capability to select several other objectives, including 
minimization of fuel consumption and maximization of progression opportunities. During its 
optimization process, TRANSYT-7F generates second-by-second flow profiles of vehicles on all links 
in the network and analyzes these profiles to determine performance measures. This model 
considers the formation and dissipation of queues in space. In addition, it accounts for flow 
interactions on adjacent links through a step-by-step analysis of all links in the system. TRANSYT-7F 
assesses cycle length by calculating equal saturation splits and applies a hill-climbing method to 
optimize signal offsets and splits.  

In similar fashion, Synchro uses its algorithm to estimate arrivals at each intersection in the 
network and to calculate percentile signal delay, stops, and a queue penalty, which addresses the 
impact of queuing on arterial performance(19). The performance index is calculated for each cycle 
length based on the splits and offsets assumed within the model as constrained by the user. There 
are various steps to developing an “optimal” timing plan, but one of the limitations of this model is the 
inability to define the parameters within the Performance Index calculation.  
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(6-3) 

3600
100101 ⋅+⋅+⋅

=
QPStDPI  

where   

PI = Performance Index 

D = Percentile Signal Delay (s) 

St = Vehicle Stops (vph) 

QP = Queue Penalty (vehicles affected) 

A detailed network analysis using an optimization tool assesses the cycle length for a coordinated 
system. Computer models facilitate multiple iterations of varying cycle combinations to determine the 
optimum signal timing parameters. (20)

6.6.3 Split Distribution 

The splits operate as a part of the coordinated timing plan, essentially acting as another set of 
maximum green times for the non-coordinated phases. Once a cycle length is determined, split 
distribution is the process of determining how much of the cycle should be provided to each of the 
phases. These are maximum durations a phase may be served before it must terminate and yield to 
the next phase. Splits are typically allocated to provide a design level of capacity to all of the minor 
movements, with the remaining residual time allocated to the coordinated movement (21).  

The coordination split for a phase i, expressed in seconds, is calculated by the sum of the green, 
yellow and red times, gi + yi + ri.  A split for phase i, expressed as a percentage, is calculated as 
100(gi + yi +ri)/C. This gi value is independent of the maximum green time for phase i and the walk 
and flashing don’t walk (if applicable). The actuated logic described in Chapter 5 applies to the phase 
and thus the phase may not use the entire split percentage allocated within the cycle. Figure 6-21 
shows these three timers, the basic timing parameters for vehicles and pedestrians and the 
corresponding split time associated with the coordination plan. The coordinated phase is slightly 
different in this regard, in that it receives the remaining time available in the cycle length.   

Determining adequate split times can be challenging.  If a split time is too long, other approaches 
may experience increased delays, while if a split time is too short, the demand may not be served.  
There are often opportunities to vary controller parameters to allow for the fluctuations in daily traffic 
flow.  As shown in Figure 6-21, there are many factors that should be considered in developing signal 
timing for both a single and a series of intersections.   
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Figure 6-21 How a phase times 
 

 
 

 
Maximum green values may be ignored during coordination using the INHIBIT 
MAX feature in many controllers. This allows the phase to extend beyond its 
normal maximum green value. 

There are various policies for determining the necessary split time for a movement. The intent 
with split times is to provide sufficient time to avoid oversaturated conditions for consecutive cycles, 
but over the course of an analysis period (15 minutes or one hour) split distributions seek to provide a 
volume to capacity ratio that is consistent with the operating agency’s design standards. In many 
cases, this will provide an opportunity for fluctuations to be met with the slack time or variable green 
time, and the actuated operation will reduce phases as necessary to maintain efficient operations.  
Slack time is defined as the additional time in a cycle that is more than the minimum split times for the 
phases at the intersection.  One common policy allocates the green time such that the volume to 
capacity ratios for the intersection critical movements are equal in the coordinated cycle length.  
Another policy is to allocate a minimum amount of time to the minor streets and the remainder to the 
major or coordinated phases to enhance progression opportunities and maximize bandwidth.  The 
latter methodology is used in traditional coordination, assuming the non-coordinated phases gap out.  
With many controller parameters and features, this allocation of green time can depend on 
pedestrians, transit phases, and gap settings.     

Coordinated Phase 
The length of the coordinated phase split is defined by the demand on the other movements. The 

coordinated phase receives the time within the cycle that is unused by the other phases of each ring. 
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There is a close relationship between the rings with the barrier on the intersecting street and therefore 
the various movements must be considered carefully. In periods of low demand on the non-
coordinated phases, the coordinated phase may receive the entire cycle in the absence of an 
opposing call. The opposing call must be received before the permissive window expires.   

Non-Coordinated Phase(s) 
For a non-coordinated phase to time during a cycle, a call must be active, or the phase could be 

activated if a corresponding phase in the other ring is active and dual entry is enabled. For instance, if 
phase 4 has an active call, the last movement (phase 8 is most likely) will be green as long as phase 
4 is active and dual entry is enabled for phase 8. Once the phase is active the basic signal timing 
settings (described in Chapter 5) and the split defined in the coordination plan determine the length of 
the phase.  

6.6.4 Offset Optimization 

Offsets should consider the actual or desired travel speed between intersections, distance 
between signalized intersections, and traffic volumes.  In an ideal coordinated system, platoons 
leaving an upstream intersection at the start of green should arrive at the downstream intersection 
near the start of the green indication.  For the users, this is a relative offset, where the time-distance 
relationship is observable and promotes progression.  The actual offset is not always observable 
because of the actuated logic within the controller that can provide an early return to green. 

The HCM suggests that an analyst should review the time-space diagrams to analyze arterial 
progression and the effectiveness of offsets for a set of signal timing plans. The actuated coordination 
logic of each signal controller causes the green time allocated to the side street to vary on a cycle by 
cycle basis. Thus, the time-space diagram is dynamic because of the phenomenon of “early return to 
green” that results from variable demand on the non-coordinated phases. The HCM translates this 
assessment of offsets into an arrival type that is used to modify the second delay term of the delay 
equation. Determining the quality of progression factor (PF) term of the HCM average intersection 
delay equation is a difficult task, even if observed in the field.  In fact, a study where traffic engineers 
were asked to observe several identical video clips of vehicles arriving at a traffic signal indicating 
those subjective assessments had wide ranges in estimated arrival types.   

Traditional methods for field optimization have included an engineer or technician observing in 
the field to determine whether the timing plan is operating and whether the offsets are effectively 
progressing traffic between intersections. These observations provide the engineer or technician with 
a limited ability to review conditions. With a 100-second cycle, there are 36 cycles during an hour, 
and the effect of an early return to green on one cycle may not be indicative of the next cycle’s 
performance. Assuming an observation period of at least three cycles leads the field performance 
assessment with a limited review of the conditions. Engineers are supplementing the field review with 
improved data.  

6.7 COORDINATION COMPLEXITIES 
This section discusses the various complexities of signal coordination. There are many variables 

that that must be considered to achieve an acceptable coordination plan. The guidelines address the 
following topics: 

• Hardware limitations 

• Pedestrians  

• Phase sequence 

• Early return to green  

• Heavy side street volumes 

• Turn bay interactions 

• Oversaturated conditions 
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Each of these topics is addressed separately in the remainder of this section. 

6.7.1 Hardware Limitations 

The microprocessor-based traffic signal controllers used today allow vendors to add new features 
by changing firmware or software. Advancements in processing power have led to many 
developments (e.g., alternative phase sequences, number of available timing plans, etc) as well as a 
variety of signal timing practices. The incompatibility of the equipment and various functionalities has 
led to some frustration for maintenance personnel. Various government agencies and the National 
Electrical Manufacturers Association have been actively developing standards to address some of the 
inconsistencies in hardware.  

Although the actual traffic signal system technology and standards have evolved significantly in 
recent years, many issues such as funding, political support, management, training, inter-jurisdictional 
coordination, and common regional visions for system operation have significant opportunities for 
improvement (22). Limitations of funding to upgrade older traffic signal controllers have led to 
systems that meet today’s needs, but “do not provide the building blocks for cost-effectively 
implementing integrated and interoperable systems.” (23).  

A particular example of this, as it relates to coordination, is the use of various cycle lengths 
throughout a day and during different times of the year. It is conceivable that a different set of timing 
plans is needed for summer and winter months (associated with tourist or other traffic trends), and 
five different timing plans are desired during a typical weekday and five additional plans warranted on 
the weekend. This may require the traffic signal controller to operate 20 different plans, which may 
not be possible due to memory storage in older versions of the hardware. 

6.7.2 Pedestrians 

Pedestrian operations can have a direct impact on the ability to maintain coordination along an 
arterial. For some agencies, pedestrian crossing time is provided for all coordination plans within the 
split time for the phase, while other agencies (and controllers) allow traffic signals to suspend 
coordination when there is a pedestrian call, requiring the controller to resynchronize after a 
pedestrian call. Providing for pedestrian crossing time every cycle may result in a larger cycle and a 
reduction in green time available for main street movements. This may result in a less than optimal 
timing plan. 

The provision of pedestrian timing and the effects of that pedestrian timing on coordination are 
two distinct concepts. Pedestrian timing is required for all phases that serve pedestrians. However, 
when pedestrian activity is relatively low, it may be desirable to allow a pedestrian call to have an 
impact on coordination because the network system is more efficient without accommodating 
pedestrians within the coordinated cycle length. 

Pedestrian timing for non-coordinated phases 
The effect of pedestrian timing on coordination is most commonly seen as it affects minor street 

timing. Figure 6-22 illustrates the basic principle of pedestrian timing for the minor street where the 
vehicle split is sufficient to accommodate the required pedestrian time.  
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Figure 6-22   Non-coordinated phase operation with pedestrian timing completed before 

the force-off for that phase. 

 
 

When the split for the phase in question is not sufficient to cover the pedestrian timing, the 
controller times the phase beyond its force-off point, as illustrated in Figure 6-23. The response of the 
controller depends on a two factors: (1) demand for subsequent non-coordinated phases and (2) non-
actuated versus actuated operation for the coordinated phases. 

Figure 6-23   Non-coordinated phase operation with pedestrian timing exceeding phase 
split  
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When the coordinated phases are non-actuated, the coordinated phases must begin timing 
sufficiently in advance of the controller’s yield point to enable full vehicle timing (minimum green) and 
pedestrian timing (walk plus flashing don’t walk). Should the amount of time be insufficient to cover 
these timing requirements, the controller will time the coordinated phase past the yield point and fall 
out of coordination, as shown in Figure 6-24. It is at the yield point that the controller logic determines 
the method by which the controller will transition back into coordination. 

 
Figure 6-24 Loss of coordination due to pedestrian call 

 
 

As a general rule, it is desirable to accommodate pedestrian timing entirely within the split for a 
given phase. By doing so, any pedestrian calls that may occur can be accommodated without causing 
the controller to time the phase beyond its force-off point. In these circumstances, the controller loses 
coordination and must transition back into coordination. 

In practice, it is possible to use smaller splits than are needed to cover pedestrian timing without 
adversely affecting coordination. The ability to do this depends on the capability of the controller. For 
example, using one particular brand of controller, coding vehicle split times of 85 to 90 percent of the 
pedestrian timing (walk plus flashing don’t walk plus vehicle clearance interval timing) results in an 
immediate loss of coordination.  In other cases, when these force-offs are combined with cycle 
lengths that are long enough to allow a controller to temporarily shorten its cycle length during 
transition without violating the controller minimum (typically at least 10 percent greater than the 
controller minimum cycle length), the controller will typically resynchronize within a cycle or two, thus 
having minimal adverse effect on coordination. 

A questionnaire survey from the NCHRP 172 project (24) indicated that as a general rule, 
pedestrian minimum time should be used for the side street when a pedestrian call occurs more than 
20 percent of the cycles. 

Pedestrian timing for coordinated phases 
The amount of time needed to serve vehicle volume or provide bandwidth along the major street 

usually results in coordinated phase splits that are sufficient to accommodate pedestrian timing. Many 
controllers require that pedestrian timing be accommodated within the coordinated split timing to 
allow any type of coordinated operation. 

For controllers operating with non-actuated coordinated phases, the major street splits must be 
large enough to accommodate all vehicle and pedestrian minimum timing requirements. For actuated 
coordinated phases, however, it is sometimes possible to provide a split for the coordinated phases 
that is less than that required to serve pedestrians. In practice, this works acceptably only if (1) 
pedestrian demand along the major street results in relatively few pedestrian calls, and (2) demand 
for the non-coordinated phases is frequently less than the split. In these cases, the controller can take 
advantage of the unused time from the non-coordinated phases to serve the coordinated pedestrian 
timing without passing the yield point and falling out of coordination. 
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6.7.3 Phase Sequence 

The sequence of phases, particularly those of left turns, can provide measurable benefit to 
arterial operation. The most common phase sequencing decision, whether to lead or lag left turns, 
can have a particularly strong impact on the ability to provide bandwidth in both directions of an 
arterial. Other phase sequence decisions, such as the sequence of left turns on the minor street or 
the sequence of split phasing on the minor street, do not directly impact arterial bandwidth but can 
affect arterial delay. These two concepts are discussed in the following sections. 

Major street left-turn phase sequence 
Modern controllers allow left turn phase sequences to be varied by time of day. This has 

traditionally been done only for protected left-turn operations, but the use of specific display 
techniques allows this to be extended to protected-permissive operations (see Chapter 4). 

The basic concept of lagging a major street left turn is to time the left turn after the opposing 
through movement (assumed to be one of the coordinated phases) terminates. Figure 6-25 illustrates 
a typical time-space diagram showing an arterial with only leading lefts and the same arterial with 
both leading and lagging lefts. The arterial demonstrated in the figure has a major intersection on 
each end and a minor intersection in the middle. As can be seen in the figure, a lagging left turn at the 
middle intersection facilitates better progression in both directions because it allows the two platoons 
to arrive at different times in the cycle. In addition, the two major intersections benefit to some degree 
from selective lagging left turns. 
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Figure 6-25  Vehicle trajectory diagrams showing the effect of changes in phase sequence  
 

 
Figure 6-25a is a vehicle trajectory diagram for an arterial with only leading left turns on the major street.  

 

 
Figure 6-25b is a vehicle trajectory diagram for the same arterial but using selective lagging left turns on the 
major street. 

 

One of the potential consequences of lagging left turns that are actuated is that the end of the 
adjacent coordinated phase becomes less predictable. In terms of dual-ring operation, the lagging left 
turn is typically served after the deterministic (yield) point is reached. The lagging left turn extends the 
concurrent (adjacent) through movement time indirectly, not as a result of any particular timing within 
the coordinated phase itself. As a result, only the detection for the lagging left turn is used to 
determine when to gap out the lagging left turn phase and the adjacent coordinated phase. Therefore, 
it is possible that the adjacent coordinated phase may gap out earlier than expected from cycle to 
cycle. 
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One technique that has been used to eliminate this variability is to use a maximum recall on the 
lagging left-turn phase. In most controllers, this can be set by time of day and can often be paired with 
the specific timing plan containing the lagging left turn. The use of a maximum recall on the lagging 
left turn makes the end of the adjacent coordinated phase more predictable. On the other hand, if the 
demand for the lagging left turn is highly variable or is less than the split coded, the use of the recall 
on the lagging left turn may give the appearance of sluggish operation or defective detection. 

In addition to the operational differences associated with lagging left turns, some have expressed 
concern over potential safety differences with having left turn sequencing changing by time of day.  
Even if lagging operation is used during coordinated operation during the majority of the day, the 
intersection is often configured to revert to leading-left operation when operating free (uncoordinated) 
during nighttime operations. There is no definitive research offering consensus on whether changing 
the left-turn sequence throughout the day has any negative safety consequences.  

Minor-street phase sequence 
It may be advantageous in some circumstances to adjust the left-turn phase sequence for the 

minor street. In doing this, it may be possible to reduce the delay and queuing for minor-street left 
turns as they enter the major street and arrive at downstream intersections. Although such 
adjustments may affect system-wide delays and stops, they will have no effect on the theoretical 
bandwidth for the coordinated phases. 

6.7.4 Early Return to Green 

One of the consequences of coordinated, actuated control is the potential for the coordinated 
phase to begin earlier than expected. This “early return to green” occurs when the sum total of the 
time required by the non-coordinated phases is less than the sum total of the vehicle splits coded for 
the phases. While this may reduce delay at the first intersection, it may increase system delay 
because of inefficient flow at downstream intersections or, most important, the critical intersection of 
the network. Figure 6-26 illustrates this within a time-space diagram. 
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Figure 6-26  Time-Space Diagram Example of Early Return to Green  
 

 
 

 
Figure 6-26 shows that vehicles in coordinated phases that begin early may be forced to stop at 

one or more downstream intersections until they fall within the “band” for that direction of travel. This 
can result in multiple stops for vehicles and a perception of poor signal timing.  

Early return to green can have a substantial negative effect on the performance of the 
coordinated phases. Research for offset transitioning has been completed to “smooth progression of 
a platoon through an intersection using the volume and occupancy profile of advance detectors” (25). 
Early return to green can be difficult to manage along a corridor, and it rarely can be completely 
prevented without eliminating most of the benefits of actuation. One technique that is sometimes used 
is to delay the start (offset shifted to the right) of the coordinated phase at a critical upstream 
intersection with sufficient non-coordinated demand (thus making its operation more predictable). 
Similarly, minor intersections downstream of this critical offset can be started earlier (offset is shifted 
left in a time-space diagram) to minimize the likelihood of a stop due to an early return to green. In 
either case, the engineer should use caution when shifting offsets to address early return to green in 
one direction may adversely affect operation in the opposite direction. 

6.7.5 Heavy Side Street Volumes 

Heavy side street volumes can affect the ability to progress through movements along an arterial. 
These volumes can come from either signalized intersections within the coordinated signal system or 
from unsignalized intersections, or from driveways between coordinated signals. Interchanges are a 
common source of heavy side street volumes. 

In many cases, this additional demand proceeds along the remainder of the arterial and becomes 
part of the major street through demand at downstream intersections. However, this demand often 
enters the system outside the band established for through movements traveling end-to-end along 
the arterial. It is usually desirable to adjust downstream intersection timing to allow these heavy side 
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street movements to proceed with a minimum of stops. In these cases, solutions that seek to optimize 
arterial bandwidth may be counterproductive to effective signal timing. 

6.7.6 Turn Bay Interactions 

Turn bay (or turn pocket) interactions can significantly reduce the effective capacity of an 
intersection.  This is experienced when either demand for the turning movement exceeds the 
available storage space or when vehicle queues block the entrance of a turn bay. If left-turn demand 
cannot enter the left-turn bay due to impeding through vehicles, the left-turn phase will gap out early 
due to a perceived lack of demand. This results in some left turning traffic requiring more than one 
cycle to be served. In addition, the through movements lose capacity due to the impedance of left 
turns. In some cases, this may effectively remove an entire through lane from being able to effectively 
serve through demand. 

Turn bay overflows also adversely impact progression. The impedance created by left-turn 
vehicles stored in the through lane prevents through traffic from proceeding to downstream 
intersections. As a result, any platoon of through vehicles passing through the affected intersection 
tends to be dispersed. This reduces the ability for downstream intersections to efficiently provide 
green time for the platoon. 

Turn bay overflows can occur under both under- and oversaturated conditions. Even if enough 
green time is provided to serve a given turning movement, turn bay overflow can occur if the available 
storage is insufficient to store the queue for a given cycle. For cases where the turn bay is fed from a 
two-way left-turn lane, turn bay overflow rarely has significant adverse consequences for the adjacent 
through movements. For locations with raised medians, on the other hand, turn bay overflow can 
result in left-turning vehicles extending into the adjacent through lane. 

Turn bay overflow can be managed in a number of ways: 

• Turn bays can be extended to accommodate the necessary storage. This is typically 
the best solution, but it may be infeasible due to physical constraints, access needs, 
turn bay requirements for adjacent intersections, or other factors. 

• Shorter cycle lengths can be used to keep overall queue lengths shorter, thus 
reducing the likelihood of overflow or turn bay blocking. 

• If the left turn is protected, protected-permissive left-turn phasing may be considered 
to allow some of the left turn demand to be processed during the permissive portion 
of the phase. This reduces the overall queue length. 

• If the left turn is permissive, protected-permissive left turn phasing may be 
considered to provide a period of higher saturation flow rates (the protected portion of 
the phase). This technique, however, may result in longer cycle lengths that partially 
offset the gain in capacity. Some agencies use a lagging protected period after the 
permissive period that is called only if there remains any unserved left-turn demand 
at the end of the permissive portion of the phase. 

• Conditional service for the phase may be invoked, bringing up the movement twice 
during the cycle.  

• If two receiving lanes are available, the adjacent through lane can be designated as a 
shared left-through lane and the phasing changed to split phasing. While this is rarely 
desirable for major street movements, it may be an appropriate solution for minor 
street movements. 

• At an intersection with one heavy left-turn movement on the major street, it may be 
preferable to designate the left-turn phase as one of the coordinated movements 
paired with the adjacent through movement (e.g., phases 1 and 6 or phases 2 and 5). 
This allows any unused time to roll over to the left-turn phase of interest, thus 
reducing its effective red time and associated queue formation. 
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6.7.7 Critical Intersection Control 

A challenging aspect of timing an arterial street or a network of streets is the need to provide 
enough capacity for major intersections without creating excessive delay for minor intersections. 
Ideally, all of the intersections to be coordinated operate optimally with similar cycle lengths. 
However, most arterial streets do not have this optimal arrangement due to a mixture of simple 
signals (e.g., two phases) with more complex signals (e.g., eight phases), wide ranges in cross street 
volume (e.g., major arterials versus collectors), and variations in left-turning volumes. 

The techniques to determine the ideal cycle length for each intersection in isolation were covered 
earlier. The critical system cycle length is the maximum optimal cycle length of any intersection in the 
system. 

Several techniques can be used where there is a significant disparity in the ideal cycle length for 
each intersection: 

• Each intersection is timed using the critical system cycle length. This ensures the 
ability to coordinate all of the intersections in the system. However, it may result in 
excessive delay at minor intersections. 

• Each intersection is timed to either the critical system cycle length or to half that 
value. This technique is commonly referred to as “double cycling” (a minor 
intersection cycles twice as frequently as a major intersection) or “half cycling” (a 
minor intersection has half the cycle length of the major intersection). This method 
can often produce substantially lower delays at the minor intersections where double 
cycling is employed. However, it may become more difficult to achieve progression in 
both directions along the major arterial, which may result in more arterial stops than 
desired. 

• The major intersections are operated free, and the minor intersections are 
coordinated using a shorter cycle length. Because the major intersections are 
operating free, it is impossible to provide coordination through the major 
intersections. Therefore, major street vehicles are likely to stop at both the major 
intersection and at a downstream intersection due to randomness in arrival at and 
departure from the major intersection. This technique can often result in lower overall 
system delay at the expense of additional stops along the major street. 

6.7.8 Oversaturated Conditions 

Timing for oversaturated conditions requires different strategies than those used for 
undersaturated conditions. An intersection that is operating at or over capacity requires all 
movements to operate at a saturation flow rate to serve demand. Beyond this, the timing plan may 
favor the movements with the most lanes to maximize the throughput of the intersection. Obviously, 
the timing plan must consider whether undesirable effects such as turn bay overflow or other 
conditions exacerbate the problem.  

Under these conditions, arriving vehicles must join the back of a queue to ensure that they enter 
the intersection with a minimum amount of headway (maximum saturation flow rate); however, it is 
impossible for vehicles on the arterial to maintain a travel speed traditionally desired for coordination. 

In addition, an oversaturated approach cannot serve all arriving demand, thus creating a residual 
queue at the end of a cycle that carries over to subsequent cycles. This residual queue depends on 
demand conditions and can grow from cycle to cycle. Even when demand drops, the residual queues 
create saturated conditions beyond the time period when the arriving demand would create saturated 
conditions by itself. These residual queues can extend to adjacent intersections and prevent traffic 
from exiting upstream intersections if the intersections are closely spaced. 

The general technique for accommodating oversaturated conditions involves managing queues. 
The following sections present options available for accommodating oversaturated conditions, 
including benefits and trade-offs. 
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Queue storage on minor movements to favor major movements 
It is sometimes possible to accommodate oversaturated conditions by favoring the coordinated 

movements at the expense of minor street movements. Under this strategy, the coordinated phases 
are timed for a volume-to-capacity ratio typically no higher than 0.95 to 0.98. The minor movements 
receive less green time, which results in demand-to-capacity ratios exceeding 1.0. This method has a 
few advantages. The major street receives priority, which helps maintain traffic flow along the major 
street. This typically benefits the heaviest movements through the intersection, as well as the transit 
and emergency vehicles who frequently use the major street. In addition, demand held on side streets 
cannot enter downstream intersections, thus improving the actual downstream flow rate. 

However, this type of timing strategy can have significant disadvantages. While this method can 
theoretically keep the major street moving, it creates extensive delay and queuing on side streets. 
This can have negative safety repercussions and highly negative public feedback. More importantly, it 
may be impossible to reduce splits for side-street through movements due to pedestrian timing 
requirements. If pedestrian calls are frequent enough to cause the side street through movement to 
time to its full split, the only movements with time available for use are the major street left turns and 
the minor street left turns (if present). Queue spillback for the major street left turns can exceed 
available storage and spill into the adjacent through movement, creating operational and safety 
problems. As a result of these disadvantages, this technique is often not desirable. 

Use of short cycle lengths 
One of the most effective techniques in managing oversaturated conditions is the use of shorter 

cycle lengths. Shorter cycle lengths allow more frequent servicing of all movements at only a minor 
expense of additional loss time during the peak time period. This frequent cycling provides more 
equitable servicing of all movements and allows drivers to visibly experience progress, even if it takes 
multiple cycles to be served at a given intersection.  

Queue management on major street movements 
An alternative technique is to selectively store queues on major street movements. Candidates 

for this treatment frequently include major intersections that are spaced far enough from other 
signalized intersections to allow the queues to grow without creating upstream intersection impacts. 
In addition, drivers may be more accepting of congestion at major intersections than at minor 
intersections. 

For network applications (e.g., downtown grids), it is often best to store queues outside the 
network using key signals to meter traffic into the grid network. While this creates congestion at some 
intersections, it allows a network of intersections to operate undersaturated, thus enabling traffic to 
progress through the network. 

Use of actuated uncoordinated operation 
Removing the cycle length constraint during the oversaturated period can result in efficient 

allocation of green time, provided gap timers are set appropriately. There are emerging strategies 
such as lane-by-lane detection and measurement of flow used as opposed to presence for control 
logic decision-making and operation. 
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7.0 DEVELOPING SIGNAL TIMING PLANS 

This chapter documents the process for developing signal timing plans. The intent of this 
chapter is to describe the steps necessary to develop a traffic signal timing plan for a series of 
intersections. These steps, along with calculations, must be made to produce a timing plan for 
field implementation. The information presented in this chapter builds on the concepts, guidelines, 
and information presented in the previous chapters.  

7.1 OVERVIEW 
Timing plans can be developed for an isolated intersection or several intersections on a 

coordinated arterial. At a single intersection an adjustment may be in response to a citizen 
complaint or agency staff member’s observation regarding a specific problem. Field observation 
by agency staff is often critical to identifying localized problems and solutions. This can include 
minor adjustments to the detector settings or fine tuning to adjust the split and/or offset at the 
problem intersection for the time of day during which the problem was observed. This may also 
include adjustments to pedestrian and clearance intervals in response to a perceived safety 
problem. These types of adjustments are essential for effective signal system operation. They are 
restricted to that particular intersection and do not usually consider the impact the timing changes 
may have on nearby intersections. These adjustments are solely driven by a localized change in 
traffic conditions (and in some cases geometric conditions) or the enhancement of existing timing 
at a single intersection. Care should always be taken to make sure the problem at a single 
intersection is not transferred to another location resulting in overall diminished system 
performance.  

Area-wide timing is quite different in scope from localized adjustments. The area-wide timing 
is a systematic update to a group of coordinated intersections. It provides the appropriate and 
necessary timing plans for each intersection in terms of its individual needs as well as the 
combined needs of a series of intersections (1). This includes a system-wide cycle length that 
provides the best overall performance. There is a trade-off between the efficiency of the entire 
system and that of individual intersections, and good area-wide timing should strike a balance 
between the two. Equally important, the area-wide timing process considers the number of 
different timing plans required for varying levels of traffic demand and considers the best times 
and/or traffic conditions for the changes between plans. It includes a rigorous process of 
engineering and testing both in the office and the field to ensure that the timing plans being 
implemented are well suited for the conditions. Minor adjustments are an important aspect of 
traffic signal operations but are not a substitute for carefully updated area-wide timing. 

7.1.1 Signal Timing Process  
The signal timing process has eight distinct steps that can be tailored depending on whether 

the effort is a slight adjustment of the timing or is an area-wide or corridor retiming effort. The 
signal timing process steps were introduced in Chapter 2. Refer to Chapter 2 to ensure that the 
relevant policies and objectives are defined and incorporated in the scope of the project (the first 
step in the process). The steps include: 

1. Project Scoping; 

o Review Policies, Determine Objectives, and Identify Problems; 

o Confirm Standards and Procedures; 

o Identify the study system, corridor, or intersections; 

o Divide the System into Sections; 

o Select Performance Measures; 

o Identify the Number of Timing Plans; 

2. Data Collection; 
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3. Model Development; 

o Data Input; 

o Analysis; 

o Draft Timing Plans; 

4. Field Implementation and Fine Tuning; 

5. Evaluation of Timing; 

o Performance Measurement; 

o Policy Confirmation; and 

o Reporting. 

The decisions and calculations made in these steps should be based on field data or first-
hand observations of traffic operations at the subject intersection. This process is discussed in 
detail in Section 7.3 as it relates to developing timing plans for an area-wide project. 

7.1.2 Frequency of Timing Updates 
Traffic signal timing should be reviewed every three to five years and more often if there are 

significant changes in traffic volumes or roadways conditions. Retiming traffic signals every three 
to five years is generally considered to be good engineering practice. This frequency of signal 
retiming is particularly important for jurisdictions or localized areas within a jurisdiction in which 
land use changes lead to rapid changes in traffic patterns.  

Key to the ability to identify the right frequency for signal timing updates is 
a proactive monitoring program. Monitoring should include information 
from sources external to the traffic signal operators, including planning or 
development review staff or other agency department staff that are in the 
field.  It may also include citizen complaints collected from phone calls or 
through emails. 

Signal timing should be revisited when any of the following occur: 

• Increased demand or changing turning movements (5 to 10 percent; lower percentage 
change critical when intersections operate at or near capacity); 

• Reduced traffic flow (typically 10 to 15 percent reduction); 

• Changed vehicle mix (increased truck percentages); 

• Construction activities on the study route or on a parallel route;  

• Changed land uses associated with development or travel patterns due to shifts in 
employment centers;  

• Observed queue spillback caused by oversaturation of adjacent traffic signal; or 

• Other factors (such as the addition of a new traffic signal to a corridor associated with 
new development or changes in the roadway network).  

These changes can be produced by a number of physical alterations to the roadway network, 
including new roadways, geometric changes to existing roadways, or added or relocated bus 
stops. Changes may also result from modifications to surrounding land uses, such as new or 
expanded residential, business, retail or educational facilities. Most communities experience 
many of these transformations over a period of three to five years. Changes in traffic flow and 
roadway network characteristics often lead to the need for new signal timing. Equally important, 
they may also require changes in the times of day during which the timing is implemented. In the 
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case of reduced demand, they may also lead to situations in which signal removal or flash 
operation during certain periods of the day is appropriate. 

These alternative approaches are typically used to determine when new timing plans should 
be developed:  

• The agency may develop a regular schedule (e.g., three years) and retime 1/3 of their 
system annually. 

• The agency may identify the need for qualitative new timing and selecting areas for 
retiming based on the observation of degraded performance or areas undergoing 
development or redevelopment. The latter is due to increased intersection delays  or 
symptoms such as cycle failure (queues do not completely discharge during each signal 
cycle), spillback from left turn bays or between intersections, and unused green time on 
side streets. 

• The agency may perform an engineering analysis of areas where signal timing may be 
warranted. This can be done through the use of a simulation or by methods that compare 
the performance of the existing timing system against its optimized timing performance 
developed with signal timing software (such as Synchro, TRANSYT 7F, TEAPAC or 
PASSER II). 

 
In some cases, agencies have found that signal systems that initially require timing every 

three years may require less frequent timing (every five years) as neighborhoods and their 
attendant traffic flows mature and stabilize. However, the need for retiming should be reexamined 
every three to five years using a formalized process, such as described above.  

7.1.3 Steps  
This section describes a procedure to develop a signal timing plan for a series of coordinated 
intersections. The procedure comprises a series of steps that describe the decisions and 
calculations that need to be made to produce a timing plan that will yield an effective relationship 
between a series of signalized intersections. Each step is described in detail in the following 
sections. Figure 7-1 highlights the overall steps involved in a signal retiming project. 
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Figure 7-1 Project Scoping  
 

 
 
 
As highlighted in Figure 7-1, a key component of the signal retiming process is ensuring that the 
agency objectives and policies are being met with the signal timing plan development. Once 
these are confirmed, field implementation, evaluation and refinement, and reporting can be 
performed for the project.  

7.2 PROJECT SCOPING 
The project scoping is a key component of signal timing development. Project scoping 
establishes objectives, standards and procedures, study area, performance measures, and the 
number of timing plans. 

7.2.1 Determine Objectives based on Signal Timing Policies 
The signal timing policies and the associated objectives developed using the process 

described in Chapter 2 are the basis of the development of the area wide timing plan. Common 
objectives include reducing stops, delay, and travel time for a corridor. It is important in scoping a 
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project to recognize that there is a point when the objectives of smooth traffic flow are irrelevant. 
Recent research conducted by the FHWA describes this in detail. 

During the project scoping period, consideration should also be given to identifying known 
problems. The identification of these problems may be the result of public comments, staff 
observations, or known discrepancies with established policies. The identification of problems 
during project scoping may be an iterative exercise done in conjunction with determining 
objectives. In other words, previous problems may help shape the project objectives and/or, by 
clearly defining project objectives, deficiencies may be more apparent and easily addressed.  

7.2.2 Confirm Standards and Procedures 
Beyond the big picture policies determined above, there are also specific procedures and 

standards that should be confirmed as a part of the scoping process. The standards identify 
parameters used for the timing of change and clearance intervals, actuated timing settings, and 
pedestrian timing. The MUTCD defines several of these values and provides standard policies for 
agency use. 

7.2.3 Dividing the System into Sections 
The third step in project scoping is to identify logical groups (sections) of signals to be 

included in the timing process. The concept of sections is an important one. Typically, every 
intersection in a section changes to a new timing plan at the same time of day. Each intersection 
in a section likely operates in the same control mode—manual, time of day, or traffic responsive. 
For example, if an incident occurs and an operator would like to manually select an incident 
timing plan, the incident plan is implemented for every intersection in the affected section. In 
some cases during oversaturated conditions, intersections may be operated free to insure 
efficient green allocation. 

Operational reasons are not the only justification for sectionalization. When traffic signal 
optimization software is used, the algorithm that is used to determine the best (optimized) timing 
is most sensitive to changes in smaller numbers of intersections than changes in an entire system 
equaling a large number of intersections (20 or more). Smaller groups of signals are easier to 
deal with. This includes management of data, collection of traffic data, implementation of new 
timing in the field, and fine-tuning adjustments to installed timing. 

From the preceding discussion of sections, it should be clear that sections are autonomous 
groups of signals that can be controlled independent from other groups of signals. The groups of 
signals don’t have to operate the same cycle length; double cycling is evaluated when a common 
cycle length is not desirable. This understanding of sectionalization leads to the definition of the 
following section characteristics: 

• The best size for a section is in the range of 2 to 30 intersections, understanding that as 
the number of intersections increase, the likelihood of a solution with a very small and/or 
discontinuous progression band also increases. 

• It is possible for a single intersection to serve as a section, such as the case of an 
isolated intersection, or an intersection that is at the junction of two crossing arterials, 
each of which is a separate section.  

• Section sizes can often exceed 30 intersections in cases where there are no logical 
breaks in intersection operation, such as in a large central business district where there is 
equal block spacing. 

• If possible, section sizes should not exceed 100 intersections because the data 
management and installation requirements become unmanageable. 

• Sections should include groups of intersections that are logical to control as a “unit.” This 
can be determined by common changes in traffic flow among all intersections (i.e., the 
peak period occurs at nearly the same time at all intersections in the section), by 
common changes in the time at which saturated conditions occur, by which intersections 
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are impacted by the presence of incidents, or by the geographic location of the 
intersection. 

• Adjacent intersections are considered when the distance between intersections is less 
than one mile and the traffic flow along the corridor is greater than 500 vehicles per hour 
per direction. 

• To the greatest degree possible, sections should be created among groups of 
intersections whose operation does not have to be coordinated with intersections outside 
the section boundary. In this manner, one section can change its timing plan or control 
mode without concern for the impact on intersections outside the section. A commonly 
used natural boundary for a section is the intersection of an arterial with a freeway 
interchange. 

However, there are also a number of misconceptions about sections, including: 

• It is necessary for all intersections in the section to operate using the same cycle 
length—False. A common cycle length is not required. The definition indicates that all 
the intersections in the section must operate using the same timing plan, in which the 
cycle, split, and offset is defined for every intersection. However, the specific values do 
not need to be common to all the intersections in the section. 

• It is not possible to coordinate sections with each other—False. Systems using 
common time bases for all intersections and operating on the same cycle length or a 
multiple of one another can be coordinated across all section boundaries. 

• Intersections cannot be reassigned to different sections on a time-of-day basis—
False. Some systems permit reassignment, which means it may be possible to vary 
intersection-to-section assignments by time-of-day. 

As previously indicated, section boundaries are selected in a manner that will minimize the 
need for interaction with the signals in adjacent sections. For example, the signals on roadways 
connecting the two sections should be far enough apart that there is little need for signals in one 
section to be coordinated with the signals in the adjacent section. The traffic engineer should look 
for groups of signals that are surrounded by a buffer zone, which may be in the form of long 
intersection spacing, natural boundaries such as railroad tracks or bridges, changes in land use, 
or other factors that lead to differing traffic characteristics.  

7.2.4 Select Performance Measures 
As the project scope is defined, performance measures must be selected to evaluate the 

success of the retiming effort. Most operators use stops and delays as measures because they 
are the most sensitive to changes in signal timing and are the most obvious improvements that 
motorists will observe. However, several things should be considered prior to arriving at this 
decision’ including funding sources, the need to report results to the public, environment, etc. The 
FHWA and NTOC have projects that highlight a standard set of performance measures that 
emphasize the importance of travel time in addition to stops, delays, and average speeds.  

During under-saturated conditions, stops and delay are the performance measures that are 
typically used. During oversaturated conditions, the objective is to minimize the time period during 
which these conditions exist and manage queue spillback between intersections. The 
performance measures in use include queue lengths, numbers of cycle failures, and the percent 
time that intersections are congested. This is accomplished by prioritizing movements and 
controlling the directions of queue build-up to avoid spillback and to minimize cycle failures. 

Once the measures have been selected, the locations and routes that are candidates for 
performance measurement should be selected. Measurements should be made before new 
timing is installed and again at the completion of the signal timing process. In this way, the 
effectiveness of the retiming effort can be evaluated and communicated with agency 
management and the public. The before-and-after evaluation can also be used to identify 
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locations where additional adjustments are needed because their performance falls short of 
expectations. 

7.2.5 Identify the Number of Timing Plans 
Since timing plans are developed for specific sets of traffic conditions, it is important to define 

the times of day when those traffic conditions exist, and therefore, the times of day when each 
plan should be used. It is also important to determine the number of unique sets of traffic 
conditions that will require signal timing plans. For example, tourist areas that experience a large 
fluctuation in traffic flow throughout the year may find it beneficial to develop timing plans for the 
tourist and non-tourist seasons of the year. 

A number of factors constrain the amount of plans that can practicably be developed, 
including: 

• Resources. Collecting data, developing plans, installing the plans and fine-tuning 
plans is a labor-intensive process; this work is constrained by available personnel and 
fiscal resources. 

• Control Equipment. An important step in developing signal timing plans is making 
sure that the project engineer/technician has a full understanding of the controller 
type/equipment being used by the agency and its features, functions, and possible 
limitations of that equipment. Many systems have limits on the number of plans, phase 
sequences, and other signal timing operations that can be accommodated within the 
controller. This limitation should be carefully considered, and if resources are available 
for modernization they should be sought. If possible, a review of the equipment should 
be completed during the scoping process or, at a minimum, at the start of the project. 

• Data Availability. Some plans, such as for snow storms, hurricanes, incidents, and 
store sales are based on conditions that occur on rare occasions. Collection of traffic 
data during these transitory conditions can be difficult if not impossible. Many agencies 
respond to these “unusual” circumstances through adjustment of existing plans. For 
example, agencies might increase the cycle length and slow down the speed of 
progression for plans that are used during snowstorms. 

The process of selecting the number of timing plans and the times of day when they operate 
may be determined through a combination of reviewing traffic data along the corridor, such as 24-
hour directional traffic counts, intersection turning movement counts (TMCs), and traffic 
engineering judgment. Ideally, the following steps are used to determine the number of different 
plans and appropriateness for time of day changes: 

• For each section of the system (this is another reason why sectionalization is 
important), select a sample of representative intersections. These might be the most 
important intersections in the section (if some parts of the section are more important 
than others), or they may be a group of intersections whose traffic conditions are typical 
of those existing throughout the section. In either case, the set of representative 
intersections must include only locations that are adjacent to each other. Note that this 
process will require the availability of hourly counts for the entire time period being 
analyzed. 

• Prepare a graph that plots the traffic volume as a function of time of day for the two or 
three most important intersections in the sample. Using the graph, identify the AM, PM 
and off-peak time periods for the sample. This step is executed using judgment in the 
same manner that a traffic engineer would manually determine the time periods for 
these conditions.  

• Further analysis could include using the signal timing optimization model to determine 
whether the performance of the system would be improved with different timing plans. 
This requires substantially more data and may be completed later in the process. 
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Figure 7-2 has been prepared to represent the process described above. This figure shows 
the 15-minute periods that are included in each of the three major time periods (AM, PM and off-
peak). The bounds or number of major periods can be varied as described above. Frequently, the 
greatest benefits can be found in breaking the off-peak period from the peak periods. For 
example, it may be desirable to add a noontime plan to accommodate increased traffic during the 
lunch hour. However, there must be a balance in the number of plans provided as many traffic 
signal controllers may need several cycles before achieving a coordinated offset and cycle 
following plan transition.  

 

Figure 7-2 Traffic Volumes Summary Used to Determine Weekday Time of Day Plans 

 
 

In addition to time-of-day plans, separate plans for weekdays, weekends or even specific 
days (such as Friday in a high weekend travel area) may be warranted based on variation in 
travel patterns and volumes. Figure 7-3 illustrates this process for a weekend time-of-day volume 
profile. For weekend time-of-day plans, it is common to use one timing plan for most of the day 
due to the balanced traffic volumes. A second timing plan might be used between uncoordinated 
operations and the peak traffic volumes. 
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Figure 7-3 Traffic Volumes Summary Used to Determine Weekend Time of Day Plans 
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Through the above-mentioned process, the number of timing plans should be determined and 
included in the scope of work for the project. Figure 7-4 outlines the next steps used to develop 
signal timing plans that can be implemented in the field.  
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Figure 7-4 Signal Timing Process Once Project Scoping Is Complete 

 
 

7.3 DATA COLLECTION 
The data collection effort for a signal timing project can be quite costly and time intensive. 

This section summarizes several types of data used, as well as techniques that can be used to 
reduce the data collection effort and expense.  

The data typically can be categorized as: traffic characteristics, traffic control devices, 
intersection geometry, and crash history. Data associated with each category are described in 
subsequent sections. The description focuses on the collection of data at an existing intersection. 
If the intersection does not exist, then estimates will need to be provided. In many instances, the 
data described herein will have already been collected as part of the engineering study 
associated with the signal warrant analysis. 

7.3.1 Traffic Volumes 

24-Hour Weekly Volume Profiles  
Weekly traffic volumes should be collected at critical locations along the corridor. These 

locations are determined by the peak hour time periods and traffic patterns of the corridor. The 
weekly traffic volume profiles are an important element in the data collection effort and are used 
to identify: 
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• The number of timing plans used during the weekdays and weekend; 

• When to transition from one timing plan to the next; 

• Volume adjustment factors for developing turning movement counts; and 

• Directional distribution of traffic along the corridor. 

Weekly traffic volumes can be collected using tubes, system detectors, or other ITS devices 
that are in place along the corridor. Using system detectors or other ITS devices will reduce the 
time and cost of the data collection effort. 

Turning Movement Counts  
Turning movement counts are typically collected at each of the subject intersections under 

consideration for retiming. Depending on the traffic volumes and traffic patterns along the 
corridor, turning movement counts often only need to be conducted during peak periods, 
commonly the weekday morning, midday, and evening peak time periods. The daily traffic volume 
profiles should be used to identify the specific time periods for conducting the counts, as well as 
for use in developing volume adjustment factors for the weekend and/or off-peak traffic volumes. 
At some locations, the traffic volumes may be higher or more critical during the weekend time 
periods, which could lead to performing turning movement counts for the weekend and the 
weekday time periods. Additionally, seasonal traffic patterns may need to be considered and 
incorporated in the scope of work. Procedures for conducting, recording, and summarizing traffic 
counts are described in the Manual of Transportation Engineering Studies (2). 

Intersection turning movement counts are collected for representative traffic periods. The 
traffic count should include a count of all vehicular traffic at the intersection, as categorized by 
intersection approach (i.e., northbound, southbound, etc.) and movement (i.e., left-turn, through, 
or right-turn movement), pedestrians, and vehicle type (including transit). If heavy vehicles are 
significant, the vehicular count should be further categorized by vehicle classification. The 
presence of special users at the intersection (e.g., elderly pedestrians, school children, bicycles, 
emergency vehicles, etc.) should also be documented.  

Vehicular Speed 
Data on vehicular traffic speed should be gathered to identify the approach speeds to the 

intersection. This is especially important in determining the signal phasing. In cases where the 
traffic signal is a new installation, detection layouts (number of detectors and location) are based 
on the approach speed. Traffic speeds are especially important when considering the detector 
timing described in Chapter 5.  

Travel Time Runs  
Travel time runs can be used to calibrate the existing analysis model and to compare the 

corridor operations before and after the new timings are implemented. Travel time runs are 
collected by driving the subject corridor and recording the delay, stops, and running time using 
electronic equipment. The following information can be collected from the study and later 
analyzed and used to develop the timing plans: average travel times, intersection delays, 
intersection stops, and speeds. Travel time and speed are common measures to report to elected 
officials and the public when doing signal timing improvements. It is also a good practice to 
monitor travel time as a means of determining the quality of existing timing and the need to 
retime. 

7.3.2 Intersection Geometry and Control 
A site survey should be conducted to record relevant geometric and traffic control data. 

These data include: number of lanes, lane width, lane assignment (i.e., exclusive left turn, 
through only, shared through and right turn, etc.), presence of turn bays, length of turn bays, 
length of pedestrian crosswalks, and intersection width for all approach legs. An effective method 
for recording this information is with a condition diagram. An example condition diagram is shown 
in Figure 7-5. 
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Figure 7-5 Example intersection condition diagram. 
 

 

 
 

Other information that can have an impact on signal operations include: approach grades, 
sight line restrictions, 85th percentile approach speed (if different from the speed limit), presence 
of on-street parking, presence of loading zones, presence of transit stops, dips in approach profile 
near the intersection, and intersection skew angle. Many of these factors will have an impact on 
the capacity of one or more movements at the intersection; they may also influence intersection 
safety. 

If the intersection is being re-designed and existing conditions are the basis for documenting 
the benefits associated with the proposed design, then information about the existing detection 
design is also needed. This information includes: the number and location of existing detectors, 
their length and type, the number of detector channels associated with the detection for each 
traffic movement, and the type of controller memory associated with each detector channel and 
the detection mode. 

All traffic control devices at the intersection should be inventoried during the site survey. This 
inventory should be categorized by intersection approach and include the speed limit signs, 
parking prohibition signs, turn movement prohibition signs, and one-way street signs. This 
information includes: the number and location of existing vehicular and pedestrian signal heads, 
phase sequence, use of overlaps, and signal timing settings. 
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7.3.3 Field Review  
An important component of the signal timing development process is performing a field 

review at the signalized intersections and of the subject corridor. The key elements to consider 
are location and operation of signal equipment, intersection geometry, signal phasing, 
intersection operations, vehicle queuing, adjacent traffic generators, posted speed and/or free 
flow speed. The free flow speed will assist with calibrating the traffic model and establishing 
offsets that reflect the traffic conditions. However, the use of the free flow speed or posted speed 
should be discussed during the scoping process.. The field review is an excellent opportunity for 
the engineer or technician to become familiar with the operations, geometry, and potential 
constraints at the intersection, as well as to identify signal equipment (i.e., pedestrian indicators, 
detectors, or controller) that might not be operating properly. It is also an excellent opportunity to 
observe operational issues that would not be obvious by the hard data alone, such as queue 
spillback and approaches that are not serving the full demand. The data collection sheet shown in 
Figure 7-6 provides some of the information that might be useful during the field review. 

One of the challenges of field data collection is to visit the corridor in a way 
that allows observation of the most critical time periods and important 
intersections. Identifying congested locations will be important to isolate 
where traffic analysis may need additional attention.  

During the field review, if observations are made that reveal the signal 
timings are working adequately, then this should be noted. Many locations 
have traffic patterns that may be stable and have not undergone any 
geometric or signal phasing improvements, resulting in the existing 
operations being acceptable. This initial review may result in a smaller 
scope of project and could lead to focusing the effort on other deficiencies.  
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Figure 7-6 Signal System Data Collection Sheet 
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Turning movement counts are typically one of the more costly items in the scope of a traffic signal 
retiming study. FHWA published “Signal Timing on a Shoestring,” which provides some guidance 
on ways to minimize the data collection effort through a short count method or by estimating 
turning movement counts using link traffic volume data. These guidelines may be useful on 
corridors or networks where the traffic conditions are predictable. However, in developing areas 
where traffic patterns are rapidly changing, it may be more appropriate to collect two- to three-
hour turning movement counts for the various study-time periods.  

Use of existing detection for collection of turning movement counts is a 
practice recommended by the Institute of Transportation Engineers in a 
recent Informational Report.  

7.3.4 Existing Signal Timing  
This information is important to obtain at the subject intersections as it is used to develop an 

existing analysis model. Key information from the existing signal timing includes phase sequence, 
yellow and all-red intervals, pedestrian walk and flashing don’t walk intervals, minimum green, 
and detector settings. Additionally, if the intersection is operating in coordination, then the cycle 
length, splits and/or force-offs, offsets, and reference phases should be obtained from the existing 
signal timing. Some unique settings may be used in the field that can be identified by reviewing 
the existing signal timing, such as conditional use, overlap, or limitations in the phase sequence 
that can be incorporated in the existing model and timing development. The existing signal timing 
helps the user understand what currently exists in the field and provides a baseline for 
improvement.  

7.3.5 Intersection Analysis 
The building blocks of traffic signal timing rely on the analysis procedures highlighted in 

Chapter 3 and the intersection design elements described previously in Chapter 4. Combining the 
analysis with the design elements leads to the development of potential changes as a part of the 
signal timing process.  

Assess Signal Phasing 
During this step, data collected is used to determine a reasonable signal phasing for the 

conditions. Specifically, the key determinations in this step are whether a left-turn, right-turn, or 
pedestrian phase is needed for the various approaches in combination with the opposing 
approach. Guidelines for making these determinations are provided in Section 4.3. The phase 
sequence for leading or lagging left turns is described in Section 4.4. Pedestrian phasing is 
covered in Section 4.5. 

Identify Traffic Signal Control Mode of Operation 
During this step, the need for coordination should be evaluated. Additionally, whether the 

intersection should operate as pre-timed, semi-actuated, or fully actuated and whether it should 
be coordinated with adjacent signals is determined. It is important to consider the daily volume 
variation, prevailing approach speed, and objectives for the operation of the traffic signal. 
Guidelines for making this determination are provided in Section 5.2. If the intersection is part of a 
coordinated signal system, then the control mode is likely to be coordinated-actuated, where the 
minor movements are actuated and the major-road through movements are coordinated.  

Verify Detection Design 
An intersection's detection design depends on the mode of operation and the prevailing 

speed on each intersection approach. An intersection operating with pre-timed control does not 
require detection. In contrast, an intersection operating with semi-actuated or fully-actuated 
control will need detection for each actuated traffic movement. Guidelines for designing various 
types of detection are given in Chapter 4. 
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Refine (or Develop) Basic Signal Timing Parameters  
During this step, the basic signal timing parameters are evaluated to determine the settings 

that will operate as a part of the timing plan. In the absence of coordination, these parameters 
control the green allocation and cycle length of the intersection. Intersections operated as part of 
a coordinated system will rely on the parameters to provide boundaries for the traffic signal timing 
and modifiers to the coordinated plans. It is very important that the basic signal timing 
parameters, as outlined in Chapter 5, be considered during any retiming effort as they may have 
a significant impact on both coordinated and uncoordinated operations. An evaluation of the basic 
timing parameters may be most effectively performed through field observation (e.g., 
performance of vehicle detection due to passage time settings or adequacy of clearance times).  

7.4 MODEL DEVELOPMENT 
This section addresses the steps needed to develop an analytical model for the signal 

retiming study. The first step is to select the model. Chapter 6 discusses the various models used 
for signal retiming and the use of manual methods. 

Many computer-based tools are available to calculate and evaluate signal timing. Since many 
of these tools assume the presence of under-saturated conditions, it is important to recognize 
their capabilities and limitations. It is recommended that users develop a thorough understanding 
of the selected computer programs, their use, and how they relate to the field conditions.  

The process of evaluating existing timing plans and developing new timing plans is iterative 
and involves detailed reviews of the information to successfully meet the objectives of the study. 
Several elements should be considered in the study: 

• Establish a “standards and conventions” document (i.e., file naming, map settings, base 
data parameters, analysis settings) that provides the user with consistency through the 
retiming process; 

• Review the plan development in levels or stages to ensure efficiency; 

• Coordinate with the respective agencies; and  

• Include quality assurance and quality control measures. 
 

 7-16



Figure 7-7 Use of a Signal Timing Model in Initial Assessment 
 

 
 

As shown in the figure, the data (traffic volumes, link network, lane geometry, existing signal 
timing, etc.) is coded in the software model and used to perform a cycle length analysis. From this 
analysis, a preferred cycle length is selected for the section based on the objectives of the study. 
This cycle length is refined through an iterative process of evaluating individual intersection 
operations with the system operations. Through this process, a final timing plan is developed and 
used during field implementation.  

The requirements for developing timings for saturated and under-saturated conditions should 
be considered as the model is developed. Saturated conditions require careful distribution of 
green time that should include timing settings that seek to balance queue buildup and meter 
incoming demand. Because under-saturated flow tends to be stable (similar from one cycle to the 
next) traffic signal timing software can be used to calculate the best signal timing. Congestion 
exists if traffic conditions in the section are unstable with growing queues, spillback, cycle failure, 
or left turn bay overflows. Under these conditions, a separate process of calculating timing for 
saturated conditions should be used. 
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In saturated conditions, congestion is difficult to avoid. Therefore, the control policy should be 
aimed at postponing the onset and/or the severity of secondary congestion, which is caused by 
the blockage of upstream intersections.  

 

Turning movement counts may not capture the actual demand at 
intersections when conditions are oversaturated. Typical data collection 
measures for turning movement counts result in the traffic flow through the 
intersection rather than the actual demand that may still be part of a queue. 
It is important to validate the model to identify periods and locations where 
demand exceeds capacity. 

7.4.1 Data Input 
Depending on the size of the network, the data input work effort varies in intensity. With a few 

intersections the work effort is quick. However, if you have a corridor with 15 intersections or a 
downtown network with 100 intersections, the work effort becomes time consuming. To be 
successful, data input must be organized. The typical data used in the model include lane 
geometry, link speeds and distances, phase numbering, left- and right-turn phasing, existing 
signal timing (i.e., yellow and all-red intervals, pedestrian walk and flashing don’t walk intervals, 
minimum green, and detector settings), controller type, and coordinated reference phases. The 
data can be categorized into two sets: Network Parameters and Signal Timing Parameters. 

• Network Parameters - These are parameters that are typically fixed through the analysis 
process. Examples of these include lane geometry, link speeds and distances, phase 
numbering, and left- and right-turn phasing. The link distances can be identified using 
aerial photography or a GIS map as base mapping in the software. 

• Signal Timing Parameters – These are isolated signal timing parameters that are 
typically reviewed and modified during a retiming study. Examples of these parameters 
include yellow and all-red intervals, pedestrian walk and flashing don’t walk intervals, 
minimum green, and detector settings. These parameters are reviewed, and changes 
may be recommended at the beginning of the project. Once these parameters are 
reviewed and approved, they are used in the network and to develop the new 
coordinated signal timing plans. Chapter 5 describes methods to calculate signal timing 
parameters.  

The network parameters and signal timing parameters are inputted in the selected model 
(i.e., Synchro, PASSER, TRANSYT-7F, or TEAPAC) to establish the base network. Certain 
parameters, such as traffic volumes and signal timing, may be inputted in the model through an 
automated process using the Uniform Traffic Data Format (UTDF). A base network is established 
for each of the study time periods (i.e., morning, midday, p.m., etc.)  

Field observations should be compared with the traffic operation results for each time period 
in the model. If necessary, the base networks for each of the time periods should be calibrated 
using travel time, delay, and queue data collected from the field. Parameters within the models 
that can be adjusted to calibrate the existing base networks with actual field conditions include 
saturation flow rates, right-turning-vehicles-on-reds, lane utilization, and other parameters. A 
review of the calibrated model should be performed prior to moving forward with the timing plan 
development analysis. 

7.4.2 Analysis 
Several steps are typically used to analyze the different time periods when trying to establish 

a set of timing plans for the corridor. Figure 7-8 illustrates the process used to analyze the data 
and move towards plan selection.  
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Figure 7-8 Cycle Length Selection 

 

As shown in the Figure, the base network for each time period is used to select a cycle 
length, evaluate intersection and system operations, and identify the best plan based on the 
objectives of the study. These tasks are described below.  

Cycle Length Selection 
Cycle length selection should reflect local policies and users of the system. Theoretically, 

shorter cycle lengths result in lower delays to all potential users. However, as tradeoffs are made 
among the various users, cycle length selection becomes more complex. As we consider more 
users, the cycle length may increase; each intersection is assessed for its cycle length 
requirement independently to determine a minimum cycle length. 

The cycle length for the subject time period is determined based on the performance 
measures that have been identified for the system. The analysis of cycle length is performed 
using either simulation or signal timing software, during which the performance of the section is 
evaluated for a range of different cycle lengths. The range of cycle lengths used begins with the 
minimum cycle length (which is determined using Webster’s equation or a similar process) up to a 
maximum value determined by signal timing policy and controller capabilities. Typically, the range 
is evaluated at two second intervals. 

After the initial analysis, two to four cycle lengths should be identified based on the objectives 
of the study and results of the initial analysis. The selected cycle lengths should be carried 
forward and analyzed for both intersection and system operations. 

It may be helpful to summarize some of the MOEs from the different cycle length analyses to 
assist in selecting cycle lengths for further evaluation. As mentioned in previous chapters, a MOE 
that is often used to identify acceptable operations is volume-to-capacity ratio. A volume-to-
capacity ratio of 0.90 or less is typically an acceptable measure; a volume-to-capacity ratio of 
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greater than 1.0 would be a measure of oversaturated conditions (provided the assumed 
saturation flow rate is accurate). Figure 7-9 and Figure 7-10 illustrate intersection and system 
MOEs for various cycle lengths. 

Figure 7-9 Cycle Length Analysis – Volume-to-Capacity Ratio Summary 
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Figure 7-10 Cycle Length Analysis – Performance Index, Delay, and Speed  

Cycle Length Summary - Network MOEs

0

200

400

600

800

1000

CL = 80 CL = 100 CL = 120 CL = 140

Cycle Length (seconds)

Pe
rfo

rm
an

ce
 In

de
x 

an
d 

To
ta

l D
el

ay
 

(h
ou

rs
)

20

22

24

26

28

30

A
ve

ra
ge

 S
pe

ed
 (m

ph
)

Performance Index Total Delay Average Speed
 

 7-20



Cycle Length Refinement – Intersection Analysis 
Once a cycle length is selected, the volume-to-capacity ratios, movement splits, minimum 

splits, and vehicle queues should be evaluated at each of the subject intersections for the two to 
four cycle lengths identified for further refinement. This analysis allows the user to assess if the 
cycle length will meet specific objectives of the study. For instance, if an objective is to ensure 
that pedestrian timings are accommodated within each phase split, then this assessment would 
make sure that the phase splits accommodate the pedestrian timings. The key elements are 
further shown in Figure 7-11. 

Figure 7-11 Key Elements to Consider During the Intersection Analysis 

 

1. Review movement volume-to-capacity ratios.  

V/C should be less than 0.90 (if possible) 

2. Review movements splits.  

Splits should accommodate traffic demand 

3. Review minimum splits. 

Are pedestrian times met? 

Is there an agency policy for violating pedestrian minimums? 

4. Review vehicle queues. 

Are the queues excessive? 

Signal retiming is an iterative process that requires time to arrive at the most appropriate 
solution for the subject corridor. At the conclusion of the intersection analysis, the user should be 
able to identify one or two timing plans that would work for intersection operations. 

Corridor Refinement - System Analysis 
After the analysis is complete, a system analysis of the subject corridor or network should be 

completed to provide an analysis of: 

• Vehicle progression along the corridor (i.e., Is there an acceptable bandwidth?); 

• Intersection-to-intersection interaction (i.e., Do vehicle queues spillback?); and 

• Left-turn operations (i.e., Is there benefit to lagging a left-turn movement?). 

The user should use the following steps to ensure a detailed analysis is performed on the 
subject corridor or network:  

• Review time-space diagram and/or traffic flow profile. 

• Identify locations where the through band is being cut off (refer back to the objectives of 
the study) or where the front of the platoon encounters a yellow indication or only a few 
seconds of remaining green. 

• Identify locations where movements, such as platoons on the major street or left-turns 
from a minor street, are being stopped. 

• Identify locations where excessive queuing occurs. 

• Evaluate locations for lagging left-turns.  

• Evaluate locations where an “early green” may impact progression either beneficially or 
negatively. 
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In this system analysis, several signal timing parameters might be changed to improve the 
traffic flow, reduce vehicle queues, and meet the objectives the study. Some of these parameter 
adjustments could include offset changes, an increase in phase splits, and/or changes to the 
phase sequence of left turns on the major or minor streets. Care should be taken that if lagging 
left turn phasing is used, the requirements of the MUTCD are met so as not to create a yellow 
trap condition. 

After this review is complete, the information associated with the intersection and system 
analyses should be summarized for the different cycle lengths. The summary comparison should 
be referenced with the objectives of the study to ensure the proper selection of a cycle length and 
resulting timing plan.  

Simulation 
After the various timing plans are reviewed or the best timing plan is selected, it might be 

desirable to evaluate the plans through a simulation program. Depending on the budget of the 
study, complexity of the corridor, and the degree of congestion, a simulation tool can be used to 
provide a more detailed analysis of the timing plans. The simulation results can be used to 
determine the best timing plan for meeting the objectives of the study and to increase confidence 
that the timing plans will operate as designed. Simulation does not need to be used on every 
retiming study, but it may be useful for evaluating timing plans with over-saturated traffic 
conditions. 

The simulation program can be used to review the signal timing by incorporating the new 
timing plans in the simulation program and entering the traffic conditions for which they were 
developed. The simulation is then used to compare the selected performance measures resulting 
from the new timing with the measures produced by the existing timing or other cycle lengths. In 
this way, the potential effectiveness of the new timing can be evaluated. The simulation outputs 
can be used to identify locations where manual adjustments to the timing are required due to the 
presence of unusually long queues or other symptoms of poor performance. 

Additionally, simulation programs have animated graphical outputs that approximate aerial 
views of the simulated network. These animated outputs permit visual assessment of system 
performance, a capability that cannot be duplicated by any other form of output, including time-
space diagrams. Care must be used when reviewing animation from simulation models, as these 
should be reflective of an average run which can be selected only after review of the results. The 
Traffic Analysis Toolbox (3) describes simulation as  useful for these and other applications, such 
as: 

• To evaluate signals incorporating actuated-coordinated operations. Signal optimization 
programs treat these controllers as if they were pre-timed and then make suitable 
adjustments to approximate the operation of actuated controllers. The simulation program 
(if coded correctly) may provide a more realistic assessment of the effectiveness of the 
actuated controller within the section being evaluated. 

• To confirm the likelihood of presence of queue spillback between intersections; 

• To evaluate special features such as transit priority; 

• To evaluate system performance in the presence of saturated conditions because these 
conditions are not adequately considered by signal timing optimization programs; 

• To evaluate the effectiveness of manual adjustments to signal timing; 

• To evaluate fuel consumption and emissions or system travel time resulting from a given 
set of signal timing; and, 

• To demonstrate the improvements to public officials as it paints a clearer picture than 
numbers alone. 
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7.4.3 Draft Timing Plans 
After the cycle lengths are evaluated, the intersections and system analyzed, and the timing 

plans compared, a preferred timing plan should be selected and carried forward to final review. 
This preferred timing plan is often called a draft timing plan.  

In addition to the draft timing plans, a time-of-day (TOD) schedule is developed that identifies 
the time periods for when the draft timing plans will be in operation. Figure 7-12 and Figure 7-13 
illustrate a TOD schedule superimposed on a 24-hour traffic volume plot for a typical weekday 
and Saturday, respectively. On the weekday schedule, combined traffic peaks in the morning and 
evening during rushhour. On the Saturday schedule, traffic peaks in the middle of the day. 

Figure 7-12 Weekday Time-of-Day Schedule  
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Figure 7-13 Saturday Time-of-Day Schedule 
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The TOD schedule will vary on corridors depending on the types of surrounding land uses. 
For instance, commercial corridors may have a low volume during the morning hours, begin to 
peak in the late morning, and continue to increase in demand through the evening time periods. 
Locations that consist of theme parks may have two peaks, one in the morning when users are 
arriving to the park and one in the late evening near the park closing. It is important to understand 
the surrounding land uses and how they impact the traffic operations throughout the day.  

Typically, a summary of the MOEs and objectives of the study for each draft timing plan is 
prepared along with the draft TOD schedule and is submitted to the review agency. It is important 
for the parties to meet and discuss the draft timing plan to ensure that the objectives of the study 
are being met. After this review, the draft timing plans should be updated to reflect the final timing 
plans that will be used for field implementation.  

7.4.4 Final Timing Plans 
Once the review agency has completed its review and the comments have been incorporated 

into the draft timing plans, the timing plans are ready to be deemed final. A few steps need to be 
completed to prepare for field implementation: 

• Identify the isolated and coordinated signal timing parameters at each intersection for 
each timing plan. Most software models provide a summary of this information by 
intersection. Typical parameters that might be modified as part of a retiming project are 
outlined below. 

o Coordinated Signal Timing Parameters 

 Cycle length 

 Splits or Force offs (depends on type of controller) 

 Offsets 

 Coordinated Phase 

 Phase Sequence (Leading or lagging left turns) 

 Vehicle Recalls 

o Basic Signal Timing Parameters 

 Minimum Green Time 

 Yellow and All-Red Intervals 

 Walk and Flashing Don’t Walk Intervals 

o Other Signal Parameters 

 Rest in Walk 

 Inhibit Max 

 Transition modes 

• Identify the TOD schedule for the signal timing plans.  

• Develop controller markups of the final timing plans and TOD schedule. Figure 7-14 
illustrates an example markup for a controller. 
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Figure 7-14 Controller Markup 

 

Once the draft controller markups are completed, a detailed review of this information should 
be performed to ensure that the correct timings have been marked up on the controller sheet. 
Additionally, this review may identify other existing timing parameters that are unique for a certain 
intersection that might need to be modified to ensure operation of the new timings. Depending on 
the agency, the final controller markups should be used to update the electronic files for each 
controller. Again, a detailed review of each electronic file should be performed within the agency 
or prior to sending the final files to the agency and being implemented into the controller. This 
process assists with minimizing the number of data entry errors during the process and allows for 
adequate preparation for field implementation. Finally, if yellow and/or red settings are being 
altered or if phasing is being revised, a formal approval by the agency’s traffic signal engineer 
may be required before the changes can be implemented. 

7.5 FIELD IMPLEMENTATION AND FINE TUNING 
Once the final timing plans have been completed and the controller markups have been 

prepared, the plans are ready to be implemented and observed in the field. Field implementation 
is the most critical part of the signal retiming process. Both science and finesse are needed to 
fully realize a good timing plan in the field. However, care should be taken to not draw an 
erroneous conclusion for a snapshot of time while on the corridor. Cycle-by-cycle variations 
occur, and one must be patient during observations. It is relatively difficult to see an offset error in 
the field when upstream intersections are releasing traffic early. Figure 7-15 illustrates the typical 
steps used during field implementation.  

 

To assist with field implementation, a field notebook should be generated 
that includes hard-copies of the existing and proposed signal timing plans, 
time-space diagrams, traffic volumes, and a method for noting changes in 
the field.  
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Figure 7-15 Field Implementation Process 

 

As highlighted in Figure 7-145, the final signal timing plans are uploaded from the traffic 
control center to the master controller (if applicable), where this information is transferred to each 
individual controller. Once this process has occurred, the engineers/technicians should drive the 
subject corridor or network to verify that the new timings are operational at each intersection. 
Observations of the intersection operations (i.e., Is the intersection operating the correct cycle 
length, phasing sequence, splits, etc.?) include side-street delay, major street left-turn delay, and 
review of vehicle queuing to ensure that the cycle length and movement green time are 
adequately dispersed for the traffic demand. If new signal timings are developed and 
implemented for the pedestrian Walk and Flashing Don’t Walk times, the engineer/technician 
performing the field implementation should check all of these times at each intersection to ensure 
that the crossing times are adequate and entered correctly in the controller database. 

After visiting each intersection and confirming adequate operations, the team should drive the 
corridor to review vehicle progression and determine if any changes to the offsets or left-turn 
phase sequence is necessary. Depending on the history of the corridor and the number of 
proposed timing plans, field implementation and observations of the timings should consist of a 
minimum of three days (two days for weekday operations). If necessary, more days in the field 
should be added to ensure that the signal timings are operating acceptably. 

Any changes that are made in the field should be documented in a field notebook and in the 
cabinet notebook at each intersection. These changes will be incorporated in the model network 
for developing as-builts of the implemented signal timing plans.  

Once the signal timing is installed in a section, field observers or closed circuit television 
cameras should be positioned so that the entire system can be monitored. This activity will 
ensure that major problems, such as data entry errors, are quickly identified and corrected. Once 
the system appears to be operating correctly, it is necessary to identify the need for additional 
fine-tuning. This can be done through measurement of stops and delays at important 
intersections using the process of counting standing queues at intersections at regular intervals . 
As a final step, travel times should be evaluated using floating cars driven over the same routes 
that were followed during the evaluation of the “before” signal timing so that a comparison can be 
made. 
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If feasible, observing the traffic operations simultaneously both in the field 
and via a traffic management center can provide an efficient way to identify 
problem areas along the corridor due to short split times, excessive 
queuing, cycle failure, and/or hardware issues.  

7.6 EVALUATION OF TIMING 
With any type of project that is implemented in the field, the engineer should evaluate the 

performance of that project once it is in operation. Beyond the evaluation tools, a signal retiming 
project is no different. Some evaluation techniques include: 

• Observing the traffic flow along the corridor and vehicle queues at individual 
intersections; 

• Conducting “after” travel time and/or delay studies for the study network; 

• Fielding phone calls and listening to the public; 

• Verifying the new traffic operations are consistent with the agency policy and objectives 
of the study; and 

• Comparing “before” and “after” measures of effectiveness from the analysis model and 
data collection. 

A travel time and delay study is a common tool applied to most signal retiming projects. A 
disadvantage is that the travel time and delay information collected during the study is commonly 
limited to the through movements for the major route of the corridor and may not identify possible 
complaints from pedestrians or motorists crossing the arterial. Generally, if the objective of the 
study is to reduce stops and travel time along the corridor, a travel time and delay study is 
appropriate with observations of queue lengths on the side street approaches.  

One of the summaries that can be generated from the study is a before-and-after projectile of 
vehicles along the corridor (i.e., a time-space diagram). The time-space diagram highlights the 
locations on the corridor that experience stops and long delays under the before and after 
conditions. Figure 7-16 illustrates a typical time-space diagram from a before-and-after study.  
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Figure 7-16 Time Space Diagram (Before-and-After Study) 

 
Another set of measures of effectiveness include delay and speed, which are typically used 

to evaluate the success of the project. Figure 7-17 illustrates a before-and-after summary of delay 
and speed for the corridor. 

Figure 7-17 Delay and Speed Summary (Before-and-After Study) 

 
 

7.6.1 Performance Measurement 
It is critical to collect performance measures at an intersection to determine how well that 

intersection operates and serves the public. Reviewing and updating the intersection-specific 
timing and operational aspects of individual signalized intersections on a regular basis is 
extremely important, especially where changes in traffic volumes and/or adjacent land uses have 
occurred.  
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The most common performance measures used to describe signalized intersection operation 
are outlined in the Highway Capacity Manual (HCM). The methods used are vehicle oriented and 
focus on collecting manual data that is costly to gather. In most cases, it is not feasible for 
agencies to schedule manual data collection activities for unusual periods, such as evening 
school events or weekend peaks at shopping malls that do not allow timing plans to be developed 
to address all situations. Consequently, it is desirable to have signal systems collect their own 
data to assess performance through an integrated general purpose data collection module within 
the controller (4). However, obtaining meaningful real-time performance data from signalized 
intersections has historically been difficult because detection systems are not designed to provide 
good count information. Data is summarized in averages that may not be calibrated, and access 
to the information is limited to personnel managing the signal system.  

7.6.2 Policy Confirmation and Reporting 
After the data collection, signal timing analysis, field implementation, and evaluation are 

complete, there are two important final tasks that are needed: to confirm that the established 
policies were met and to prepare a final report.  

The final report is an opportunity to confirm that the objectives of the retiming effort were met. 
Some agencies use this step in the process to inform elected leaders about the success of the 
project and to document future opportunities. A final report documenting the before-and-after 
study is typical and may be posted on the agency websites and/or passed along to news 
agencies for the public to view. However, more time spent developing a final report results in 
higher project costs and can reduce the time for the signal timing analysis, field implementation, 
and fine tuning efforts. During the scope of work process, it is important to determine the type of 
report necessary to assist with future retiming efforts, but this report should not take away time 
spent for the signal timing analysis and field implementation.  

A report that is focused on the before-and-after study might include the following items: 

• Introduction 

• Travel Time and Delay Study Methodology and Analysis 

• Travel Time and Delay Study Summary 

• Savings Methodology and Analysis 

• Savings Summary 

• Summary 

A report that is focused on the entire study might include the following items: 

• Executive Summary 

• Introduction 

• Data Collection 

• Signal Timing Development 

• Timing Plan Summary 

• Field Implementation 

• Before and After Study 

• Conclusions 

The signal retiming process includes many steps to develop a successful set of signal timing 
plans. To promote a successful retiming project, it is critical to develop a comprehensive scope of 
work that is consistent with the agency objectives and local policy.  
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8.  SIGNAL TIMING MAINTENANCE: OPERATIONS AND 
MONITORING 

The purpose of this chapter is to summarize the various steps necessary in maintaining 
effective traffic signal timing plans. It will consider the various field settings that are important for 
response to citizen inquiries and will identify ways to address day-to-day operations of the signal 
system.  

This chapter contains four sections. The first section presents a short overview of the many 
activities that correspond to the maintenance of signal timing.  The second section presents a 
discussion of the types of activities that are completed by agencies. It will describe methods used 
to identify changes in the street network and use of traffic signal systems of various sizes. The 
third section will present a checklist of typical events (public complaints, weather, etc.) and the 
range of possible responses, with cross-references to the appropriate chapters in the manual. 
This section will also present a series of common questions and answers that can assist 
personnel involved in the direct line of communication with the public. The final section will 
highlight issues raised during the ITE traffic signal self assessment and communicate 
recommended staffing levels for public agency jurisdictions. 

8.1 OVERVIEW 
As discussed in this manual, traffic signal timing is one component of a traffic signal.  As with 

any component of a traffic signal, a maintenance element is important to ensuring that the traffic 
signal will continue to operate at the level expected by the agency policies and the general public.  
For a traffic signal, maintenance activities range from system-oriented, such as managing a 
Traffic Management Center (TMC) or providing training opportunities for staff, to local-oriented 
activities, such as inspection and replacement of traffic signals, controllers, and detectors and 
reviewing traffic signal timings on a periodic basis, to other activities, such as public relations or 
collecting traffic data at the intersection.  All of these activities are important ones to ensure 
acceptable operations of the signal system.    

Table 8-1 highlights some of the many maintenance activities of a traffic signal system.  Cells 
that are highlighted represent the activities specific to the maintenance of signal timing. 

Table 8-1 Traffic Signal System Maintenance Activities 
 

System-Oriented Activities Local Activities Other Activities 

Personnel Management Maintaining Traffic Signal 
Operations and Inspection 

Public Relations, Education, and 
Outreach 

Traffic Management Center Utilizing and Maintaining ITS 
Devices Operations and Inspection Traffic Data Collection and Inventory 

Equipment Inventory and Training Updating Traffic Signal Timing  Utilizing Website and Information 
Dissemination Outlets 

Updating Software Inventory and 
Training 

Modifying Traffic Signal Design for 
Construction Projects  

Maintenance Inventory and 
Management 

Maintaining Detector Operations 
and Inspection  

Traffic Signal System Design and 
Operations Training Traffic Signal Turn-On’s  

Updating and Maintaining 
Communication Design and Inventory 

  

Developing and Maintaining Inter-
Agency Coordination 
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8.2 TRAFFIC SIGNAL OPERATIONS  
This section presents a discussion of the types of activities that are completed by agencies. It 

will describe methods used to identify changes in the street network and use of traffic signal 
systems of various sizes.  

8.2.1 Signal Timing Maintenance Activities 

As presented above, signal operators have several maintenance activities to ensure that 
traffic signals are functioning properly.  Some of these activities related specifically to traffic signal 
timing are outlined below: 

• Retiming of traffic signals due to the following: 

o Land use changes 

o Population growth 

o Change in flow profiles (volume and classification) 

o Incident management 

o Special Events 

o Traffic signal turn-on 

o Construction work zone or temporary traffic signal 

o Traffic signal equipment change 

o Scheduled or periodic traffic signal retiming 

o High frequency or rate of crashes  

• Inventory of signal timing at each traffic signal 

• Maintaining a database of the traffic signals, including signal design, signal timing, 
and history of updates 

• Staff training for use of software and equipment 

• Responding to public comments 

• Observing traffic conditions via a Traffic Management Center or on-site field visits 

• Coordination between designers, operators, and technicians 

8.2.2 Reasons for Signal Timing Maintenance 

It is not possible to retime an entire group of signals every time adjustments are being 
considered for a single intersection.  This is true, even though the intersection requiring 
adjustment may be part of a coordinated system.  When making adjustments to a single 
intersection, the challenge is to do so without making things worse at neighboring intersections.  
In other words, the adjustments should have a positive impact on the intersection at which they 
are made, leading to the improved performance of the overall system. 

The adjustments being made are sometimes known as retiming.  Retiming may involve 
modifying the phasing or mode of operation to accommodate unusual congestion, adjusting the 
split to reflect a change in demands at the intersection, or changing an offset or green time to 
accommodate an incident in the field.  In some cases, the offset may be modified to reflect 
changes in travel behavior from adjacent intersections. 

The need for retiming may result from the professional judgment of the jurisdiction’s 
engineering staff, an incident, a new traffic signal, or the result of citizen’s calls.  In all cases, the 
request for retiming should be taken seriously, since it reflects the observation of either trained 
observers or frustrated motorists, field incidents, or construction.   
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Signal Retiming:  The need for review and adjustment of signal timing at a single 
intersection could be the result of a variety of different factors including: 

• Changes in traffic demand since the intersection was last timed.  This could include 
changes in side street demand, turning movement volume or spill back, main street 
demand, or vehicle mix (for example a higher percentage of trucks).  Changes in 
vehicle demand could also be reflected in general increases in demand that cause 
the need for longer periods with peak period timing, and the modification of night time 
flash operations. 

• Changes in intersection operations (for example addition of an approach lane or the 
moving a bus stop from near side to far side) that influence the need for timing. 

• Changes in pedestrian traffic due to land use changes (for example the opening of a 
residence for the elderly which required longer pedestrian clearance times) or the 
need for handicapped features. 

• Changes to agency policies or national standards, such as the Manual on Uniform 
Traffic Control Devices. 

• Temporary changes in roadway operations due to construction 

• Observations of previously unnoticed conditions by an alert motorist or staff member 
or through use of a Traffic Management Center 

• Agreements with other jurisdictions to coordinate with their signal systems, or to 
provide coordinated response to incidents on parallel facilities 

From the length of this list, it is clear that, in most systems, signal retiming will be required 
frequently at various intersections throughout the system.  It is important to recognize that there is 
a point at which so many localized adjustments have been made, that it becomes essential to 
initiate system-wide signal retiming as described in Chapter 7. 

Traffic Signal Inventory:  One of the items related to signal timing maintenance is the 
importance of maintaining an inventory of the traffic signals.  The database should include 
information related to the traffic signal, such as location, signal layout, signal timing, coordinated 
or uncoordinated signal operation, communication, operating agency, history of updates, etc.  A 
database provides the agency with a knowledge base of what changes have occurred and what 
might need to be updated in the near and long term at the signalized intersection.    

Staff Training: The equipment and software utilized by many agencies on its traffic signal 
system is only as good as the availability of skilled and trained staff.  Therefore, a valuable 
component of the traffic signal maintenance is ensuring that the staff managing and maintaining 
the traffic signals has been trained to operate the system.  Critical training elements highlighted in 
the FHWA Guidelines for Transportation Management Systems: Maintenance Concept and Plans 
(1) included:    

• Training by Vendors: Procurement contracts should include a requirement for on-site 
training of Agency staff in maintenance and operations of the equipment, preferably 
conducted by the vendor. 

• Training by Contractors: Procurement contracts should also include a requirement for 
on-site training of Agency staff in the maintenance and operation of the assembled 
systems, including software, hardware, and devices. 

• Training Library: The operating Agency should maintain a library of system 
documentation and, if available, a videotape or DVD library of training. 

• Staff Retention: This can be difficult in a high-tech environment, but there are ways to 
improve retention, such as providing for additional training, allowing travel to 
technical conferences, and workshops and other non-salary related perquisites for 
Agency staff. 
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As noted in these guidelines, the key to success in this ever-changing environment is 
flexibility and a good understanding of priorities for both operational and maintenance concepts, 
requirements, and training. 

Incident Management: Traffic patterns for special events, roadway construction, inclement 
weather, crashes, etc. are different from those that exist during normal traffic conditions.  It is 
important for agencies to develop and utilize an incident management plan for its signal system.  
Goals of these plans related to signal timing might include sustaining or increasing corridor 
capacity during an event through longer green times at a traffic signal, enhancing public safety 
though modified time settings could reduce delays for emergency responders traveling to an 
incident on the roadway, and guiding motorists to a certain destination.  Chapter 9 provides 
further discussion on this topic.   

Public Comments: Calls from the public are one of the most common reasons for reviewing 
intersection operations.  It is important that each agency has a process in place to field public 
phone calls, emails, etc. and addresses their responses in a timely, professional manner.  More 
discussion on this item is presented in the next section.   

8.3 DAY-TO-DAY OPERATIONS 
This section will present a checklist of typical events (public complaints, weather, etc.) and 

the range of possible responses, with cross-references to the appropriate chapters in the manual. 
This section will also present a series of common questions and answers that can assist 
personnel involved in the direct line of communication with the public. 

8.3.1 Signal Retiming  

Since the need for retiming could have been identified by a number of different sources for a 
variety of different reasons, it is difficult to define a single procedure that might be applicable to all 
possible sets of conditions.  However, in most cases, the following procedure should be followed, 
with all actions recorded: 

• Schedule the field visit for the time-of-day and type-of-day (weekend, weekday, etc.) 
for which the problem was identified. 

• Assemble the timing and configuration information for the intersection being visited.  
If the intersection is included in a system, timing information should include master 
clock, offsets, and time-of-day schedules for plan changes.  Information should also 
include controller settings.  If available, traffic count data should also be included. 

• If the intersection is included in a system, coordinate with system operators to ensure 
that operations personnel will be available by radio contact to support the field 
activities. 

• When arriving at the intersection, observe the physical condition of the street 
hardware including poles, mast arms or span wires, signal head positioning, signal 
lamp operation, pedestrian indication operation, and cabinet condition.   

• Open the cabinet and perform a physical inspection of the cabinet interior including 
cabling, physical condition and operation of cabinet components, air filter and fan.   

• Check operability of all cabinet components either through observation or suitable 
maintenance diagnostics.   

• Review controller timing by comparing settings with timing documentation 

• Qualitatively compare traffic conditions at the intersection with the traffic count data.  
Determine whether major changes in demand have occurred since the traffic counts 
were taken to support the development of the timing plans currently in use.  If major 
changes have occurred, determine whether they are temporary (due to nearby 
construction) or permanent.  If they are temporary, it is still desirable to fine-tune the 
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intersection timing.  However the log completed as the final step should include a 
notation that a second set of fine-tuning may be required when the construction has 
been completed. 

• If the deficient intersection operation occurs during heavy traffic conditions, the next 
step would be to determine whether the adjustments are intended for congested or 
under-saturated conditions.  The procedures should be followed from the appropriate 
section below. 

• If the deficient intersection operation occurs during light traffic conditions, the 
procedures of the section for “Other Types of Traffic Conditions” should be used. 

• If the deficient intersection operation is related to the use of an incorrect timing plan, 
(assuming a correct plan is available), the procedures associated with the selection 
and scheduling of plans under “Other Types of Traffic Conditions” should be used. 

• In all cases, after timing and/or scheduling changes have been made, the impact of 
the changes should be evaluated through observation of the intersection operation. 

• The final step of this process is to log the actions taken.  This is essential for 
response to the individual initiating the fine-tuning, as well as records that must be 
maintained by the agency for a variety of engineering, operational and legal reasons. 

Refer to Chapters 2, 5, 6, and 7 for more details on retiming at an intersection or a series of 
intersections. 

Retiming for Under-Saturated Conditions:  It is likely that the most frequent requests for 
intersection fine-tuning will occur during normal flow conditions.  These are the conditions that 
impact a large number of motorists, all of which expect high signal timing quality.  Motorists will 
be annoyed at instances of wasted green time during which they have to wait at a red signal 
indication when there are no vehicles on other phases.  Motorists will also become annoyed at 
locations where they have to stop at successive signals due to poor offsets.  In some cases their 
complaints are unjustified, since they are not aware of other constraints on signal timing, such as 
pedestrian clearance times and the need to make compromises in progression in order to 
accommodate flow in the reverse direction.  However, in other cases, their complaints are 
justified, and should be addressed whenever possible by the agency’s engineering and technician 
staff.   

When retiming an intersection for free-flow (under-saturated) conditions, the following steps 
are recommended: 

• Perform a qualitative evaluation of the intersection performance to determine whether 
any obvious improvements are possible. 

• Adjust the split to reflect demand on competing approaches. 

• Adjust the offset to reflect platoon arrival times. 

• Review the cycle length for possible improvements. 

Retiming for Congested Conditions:  It is important to recognize different traffic signal 
timing strategies for networks that experience congested traffic conditions or more normal traffic 
flow conditions.  Strategies begin to change from mobility and progression to queue 
management.  Congestion can be recognized by the presence of queues at signalized 
intersections that are not completely discharged during the green period.  This is known as cycle 
failure. If the deficient intersection operation occurs and consider measures such as: 

• during heavy traffic conditions, the next step would be to determine whether the 
adjustments are intended for congested or under-saturated conditions.  The 
procedures should be followed from the appropriate section below. 
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• during light traffic conditions, the procedures of the section for “Other Types of Traffic 
Conditions” should be used. 

• related to the use of an incorrect timing plan, (assuming a correct plan is available), 
the procedures associated with the selection and scheduling of plans under “Other 
Types of Traffic Conditions” should be used. 

• In all cases, after timing and/or scheduling changes have been made, the impact of 
the changes should be evaluated through observation of the intersection operation. 

 
When re-timing a congested intersection, the split and cycle length should be reviewed and 
adjusted as necessary.  When an intersection experiences congested conditions, there may not 
be a need to consider offset adjustments, except for the qualitative evaluation of intersection 
operations, since continued traffic flow between intersections may not possible.  The following 
process is should be used:   

• Perform a qualitative evaluation of intersection operation. 

o Adjust the downstream intersection signal offset to permit earlier discharge of left 
turning vehicles, to minimize the possibility that these vehicles might block 
through movements. 

o Change the signal phasing as needed to avoid spillback from left turn bays, or to 
make more effective use of concurrent phases. 

o Modify pedestrian phasing to minimize pedestrian/vehicle conflicts 

• Review and adjust the split as required. 

• Review and adjust the cycle length if necessary.   

• If these approaches prove ineffective, consider using some of the “other measures” 
described below. 

o Driveways near the intersection which potentially block the through flows, and 
which may include weaving movements might be eliminated 

o Parking can be banned 

o Double parking regulations might be rigorously enforced 

o Bus stops might be moved from near-side to far side.  This is particularly useful 
in the presence of heavy right turning traffic 

o The number of phases might be reduced.  For example, some jurisdictions ban 
left turns at critical intersections to increase available capacity for through 
movements 

o Phasing might be changed to avoid the problem of left turning vehicle blocking 
through movements.  This might be accomplished by substituting leading left turn 
phases for lagging phases, or in some cases both leading and lagging phases 
might be provided. 

o Increasing the length of turning bays can reduce the problem of left turn 
blockages 

o Other geometric improvements are possible including addition of lanes and 
overpasses 

If all else fails, metering traffic entering the control area should be considered.  Metering is 
performed by reducing the number of vehicles traveling on the congested arterial, through 
significant reduction of green times available to entering side street traffic.  The use of this 
technique avoids spillback into upstream intersections, intersection blockage and overflow of 
turning bays. 

8-6 



8.3.2 Signal Timing Inventory 

A short discussion was provided in Chapter 7 regarding this topic.  Area-wide or corridor-
focused signal retiming projects include a lot of information, such as traffic data, intersection 
geometry, signal phasing, signal timing, controller type, and posted speeds.  Thus, it is important 
that this information be managed in a database to assist with a record as well as for future 
retiming updates.  Documentation of the goals and outcome of the retiming process is also 
important.  The following is a list of items that are typically collected in a signal retiming project:         

• Types of signal control at each intersection 

• Intersection signal phasing 

• Signal timing plans 

• Measures of effectiveness (both estimated and evaluated) 

• Traffic volumes and speeds for the network 

• Geometric description of the network 

• Input data files for simulation and traffic signal timing software 

• Software files that include network and traffic signal timing for the system  

The signal timing process is greatly simplified, and its cost reduced, when this data is stored 
in a database that can be accessed each time area-wide signal timing is developed.  However, as 
with any database, its value will be reduced if it is not kept up to date.  It is essential that the 
database be updated each time controller operation is modified, including all changes in phasing, 
type of control, timing, or intersection geometrics.  In this way the value of the database can be 
preserved for access during the area-wide signal timing process. 

Furthermore, the above information relates to maintaining a database from a signal retiming 
project.  Additional information can be added based on the following items to create a 
comprehensive database of the traffic signal system. 

• Signal equipment failures and changes 

• Public comments 

• History of signal timing changes 

• Crash data  

• Other incidents reported near the intersection 

• Changes in land use 

By recording the above information in a comprehensive database, the agency will improve its 
effectiveness on managing a traffic signal system.     

8.3.3 Staff Training 

A valuable component of the traffic signal maintenance is ensuring that the staff managing 
and maintaining the traffic signals has been trained to operate the system.  Depending on the 
size of the traffic signal system and number of staff, a regional or local training program may be 
established to provide training opportunities for staff.  

Training activities could be as simple as peer exchanges within or between agencies or 
offering a series of technical sessions. These technical sessions could consist of bringing in 
outside experts to discuss important signal timing, software, and maintenance topics and offered 
on a regular monthly basis.  Other topics might be directed towards TMCs and specific signal 
timing projects.  Other training opportunities might be provided through attendance at 
conferences, education seminars, or universities. 
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Lastly, a public relation component that incorporates training might be offering short work 
sessions or seminars open to the public or other agency officials that would provide insight into 
signal timing and traffic operations.   

8.3.4 Responding to Citizen Calls 

Citizen’s calls and emails are one of the most common reasons for reviewing intersection 
operations.  The public may obtain the contact information for emailing or making a phone via a 
newspaper, website, or television/radio show.  Some agencies include a sticker with the logo, 
phone number, and catch phrase on the outside of the traffic signal controller cabinet to assist the 
public with obtaining the correct contact information.  The call could have been initiated for a 
number of reasons including: 

• Lack of understanding of intersection and controller operations 

• A signal that was in transition between two different timing plans 

• An equipment failure 

• A legitimate observation regarding a shortcoming in the existing timing 

• An incident near or at the intersection that impacts the traffic operations 

Motorists often have a surprisingly sophisticated understanding of intersection operations 
resulting from their familiarity with a given roadway.  For this reason, as well as for possible 
reasons of safety, their calls should be taken very seriously.  A well-managed signal operations 
organization will employ the following procedures in response to citizen’s calls which could arrive 
by telephone, email or letter: 

1. Identify the name and contact information of the caller. 

2. Identify the location that is the subject of the contact. 

3. Define the time-of-day for which the problem is being described. 

4. Ask for a description of the problem in terms of traffic conditions and traffic signal 
operations. 

5. Assure the caller that the problem will be investigated within a predefined number of 
days that has been established by agency policy.   

6. Enter all information provided along with the time and date of the contact into a 
database. 

Investigation of the problem should be scheduled as part of the agency’s maintenance 
operations.  If adjustments to the signal operation are required, the procedures described later in 
this chapter should be followed.  In all cases, the results of the investigation should be recorded 
in a database and described in a response to the caller using the same media (telephone, email 
or mail) that was used to make the original contact.  If no change was made, the reason for 
maintaining the status quo should also be explained. 

Some jurisdictions have websites that permit citizens to report problems 
and concerns using an automated questionnaire that guides them through 
the process of providing the information described above.   

A website may be used to record input and provide an estimate of response time, and enters 
the information provided into a database.  This is a particularly effective technique in regions 
where multiple jurisdictions are involved with signal operations and maintenance.  In this case, 
callers are uncertain of the agency to be contacted.  A website could be established for the 
region, which directs problems and complaints to the appropriate agency without requiring 
citizens to determine the responsible agency.  Examples of such websites include the Cities of 
Scottsdale, Arizona, Durham, North Carolina, and Tampa Bay, Florida. 
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While some agencies utilize sophisticated call-processing software which handles the 
database functions described here, this capability is not necessarily required.  Smaller agencies 
can use simple spreadsheets to keep track of the disposition of citizen’s calls.  In either case, it is 
critical to ensure that all calls are investigated, and that a response is provided to the caller in a 
timely manner.  Ideally, a response should be received by the caller within one week of the date 
that the initial contact has been made.  Responsive service is the key to good customer relations. 

8.3.5 Incident Management and Planned Special Events 

Signal timing can play a role in managing and even mitigating certain types of non-recurring 
congestion.  In particular, the high volumes of traffic generated by planned special events, the 
reduction of corridor capacity from roadway incidents, or the increased travel demand triggered 
by region wide evacuations can necessitate signal timing changes. A primary goal of readjusting 
signal timing in these circumstances would be to give priority to specified movements and to 
minimize the overall delay experienced by users from the non-recurring congestion.  One way to 
achieve this objective would be to sustain and/or increase the throughput of traffic at certain 
intersections by increasing the green time for those movements.  Traffic signals with modified 
timings settings perform this function by essentially “flushing” the preferred movement.   

The techniques to modify signal timing during planned special events, roadway incidents, or 
evacuations involve processes not just in traffic operations and planning, but also require some 
management and coordination at the policy and institutional levels.  On the operations/planning 
side, an initial step would be to determine the specific route and intersections where traffic signals 
would be retimed. This route could be a particular arterial that is parallel to a certain freeway.  In 
the event of an incident on the freeway, traffic could then be diverted from the freeway to this 
arterial, which could provide additional capacity with the modified timing settings in place at its 
various traffic signals.   

Adjustments to the cycle length and green time for a particular movement are typical 
components of an incident management plan.  Additionally, utilization of a traffic management 
center would be required for monitoring of the intersections during these changes to ensure that 
the operations are working, as well as, if necessary, permits the use of manual control by an 
operator.  

These operational procedures may not be effective or possible without a sufficient level of 
coordination among the jurisdictions impacted by the traffic from planned special events or 
emergency situations. This inter-jurisdictional coordination is needed among such institutions as 
law enforcement, public safety organizations, and various transportation/transit agencies to share 
resources, seamlessly exchange the required information, and to implement the required traffic 
control/signal timing plans.  With such effort to coordinate between many stakeholders, it would 
be necessary to develop various response and contingency plans ahead of time and updated on 
a regular basis.  Overall, from achieving both the non-operational and operational sets of goals, 
adjusting signal timing can offer significant benefits to eventually reduce delays for motorists 
during special events, roadway incidents, or evacuations.  More discussion is provided on this 
topic in Chapter 9.   

8.4 STAFFING NEEDS 
This section will highlight issues raised during the ITE traffic signal self assessment and 

communicate recommended staffing levels for public agency jurisdictions.  

8.4.1 Background Information 

This section provides some background information regarding staffing needs that are 
included in several literature documents.   

ITE Traffic Engineering Handbook and Traffic Control System Operations:  Installation, 
Management and Maintenance Manual:  These documents suggest labor requirements of 20 to 
25 hours per intersection for traffic signal retiming and estimates as a rule of thumb that one 
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traffic engineer is needed to properly operate and maintain every 75 to 100 signals and one 
technician to operate and maintain every 40 to 50 signals.  As a rule of thumb these estimates 
are adequate; however the current transportation environment requires much more detailed 
estimates. 

Traffic Signal Operations and Maintenance Staffing and Resource Requirements 
Guidelines:  These guidelines are part of a new project put forth by the FHWA.  The objective of 
this effort is to develop a guideline to assist agencies in developing a staffing and resource plan 
to effectively operate and maintain traffic signal systems.  The background information provided 
as part of this project suggests that the current guidance available to agencies is very general 
and not achievable for most jurisdictions.  The lack of a credible guideline for traffic signal 
operations and maintenance staffing and resource needs is one of the factors that has resulted in 
the inefficient operation and maintenance of traffic signals on a national scale.  

8.4.2 Staff Positions and Roles 

An agency may need a variety of staff positions and roles to adequately operate and maintain 
its traffic signal system.  Depending on the size of the signal system, some of these positions may 
be combined due to a combination of small signal system and limited funding available.  The 
roles of each position described below are based on information from agencies in addition to 
relevant ITE and FHWA literature.  Some of the positions and respective roles are. 

Traffic Signal Engineer - This staff person is responsibly for the day-to-day operations of the 
signal system.  Tasks include the following: Responding to public comments, approving new 
signal turn-on’s, assisting in the TMC, evaluating signal timing on existing arterials, managing 
signal operations staff and coordinating with the signal design and maintenance supervisors.   

Traffic Signal Technician/Analyst - Staff assist the Traffic Signal Engineer with their day-to-
day operations.  Focus areas include signal timing, new signals, and the TMC.  

ITS Engineer - This staff person is responsibly for the implementation of ITS projects.  Tasks 
include the following: Responding to public comments, evaluating new products, assisting in the 
TMC, managing ITS contractors and vendors and coordinating with the signal design and 
maintenance supervisors.   

Traffic Signal Maintenance Technician – Staff are generally responsible for troubleshooting 
and maintenance of the physical traffic signal equipment. 

Electronic Specialist – Staff are responsible for the complex electronic equipment at the 
heart of the signal system.  Some tasks include: 

• Closed circuit television system repair, field and central system 

• Fiber optic cable system testing, repair, termination 

• Telecommunications systems maintenance and repair 

• Traffic management center systems maintenance and repair 

• Traffic signal controller electronics testing repair and inventory 

• Other ITS devices repair 

TMC Operators – Staff are responsible for observing the traffic conditions, responding to 
incidents that occur in the field, and providing support to homeland security efforts.  Their role is 
critical to the rapid response and resolution of the situation.   

Public Relations Coordinator – Staff are responsible for field phone calls from the public, 
coordinating with the Traffic Signal Engineer and Technician on responses, and marketing the 
TMC, incident management plan, and traffic signal operations to the public.  Depending on the 
size of the agency, this position could be a full-time position or these tasks might be passed on to 
the Traffic Signal Engineer and Technician.   
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8.4.3 Staff Needs 

The ITE “Traffic Control System Operations” manual suggests that a traffic signal system 
should have one traffic engineer per 75 to 100 traffic signals and one signal technician per 40-50 
traffic signals or other field devices.  An NCHRP report (Synthesis 245) also suggests 38 to 43 
signals per technician.  The manual also provides staffing guidelines for a continuously operated 
TMC which includes one center manager, two supervisors, and five system operators. 

Overall, the current literature provides limited guidance on staffing for complex traffic signal 
systems that include a multitude of components ranging from traffic signals to video detection to 
ITS devices to incident management plans and a TMC.  With the above limitations in mind, Table 
8-2 provides general guidelines on staffing needs for a traffic signal system as it relates to signal 
retiming. 

Table 8-2 Summary of Staffing Needs 
 

Position 
1 to 50  

Traffic Signals 
51 to 100  

Traffic Signals 
101 to 200  

Traffic Signals 
201 to 500  

Traffic Signals 
501 to 1000  

Traffic Signals 
Traffic Signal 
Engineer 0 to 1 1 1 to 2 2 to 5 5 to 10 

Traffic Signal 
Analyst/Technician 0 to 1 0 to 1 1 1 to 3 3 to 5 

ITS Engineer 
- - 0 to 1 1 1 to 3 

Traffic Signal 
Maintenance 
Technician 

1 to 2 2 to 4 4 to 7 7 to 17 17 to 33 

Electronic 
Specialists 1 1 1 to 2 2 to 4 4 to 9 

TMC Operators 
- - 2 2 to 4 4 to 9 

Public Relations 
Coordinator 0 to 1 0 to 1 1 1 2 

 

 

 

Additional research in this area is necessary because all agencies vary in terms of the 
infrastructure, their staff’s skill levels, and the environment the equipment operates. For example, 
a signal technician that has ten years of experience with a particular traffic controller is likely able 
to troubleshoot a problem in less time then a technician with less experience. In many cases, the 
difference in staff time needed is significantly higher, while the cost to the agency may be 
insignificant. This particularly effects agencies with high levels of staff turnover and is a notable 
problem for many agencies throughout the country.  

Another example of this is use of older infrastructure may be less user friendly or it may fail or 
malfunction more often because of the environmental conditions which the traffic signal 
equipment operate. As with staff experience there is not specific research on the performance of 
traffic signal equipment over time and new equipment can result in other problems for agencies, 
but by utilizing a systems engineering approach during the selection and procurement of new 
traffic signal equipment, an agency may reduce the maintenance costs (staffing and consultant 
time) needed for the signal system. 
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Several agencies maintain signal systems that operate in the DOS 
environment (an operating system that was before Windows). In most 
cases, these systems are not supported by Information Technologies (IT) 
staff and access to data leads to inefficient operations or requires special 
maintenance by agency personnel.  

Proximity to traffic signals is an important consideration, especially in staffing needs for 
technicians that are tasked with responding to field complaints or maintenance problems. A city 
with a large downtown may have 100 signals within a square mile (Manhattan, Portland, OR for 
example) that are fixed time without detection as opposed to a rural district with 100 signals over 
a 100 square mile area. Obviously, in these cases, the staffing needs are likely different and may 
require different skill sets. This may be exacerbated by an agency that utilizes different controller 
types supplied by various vendors. Many agencies are transitioning from an older standard, thus 
requiring careful scheduling for staff training and equipment management. 

The Federal Highway Administration has recently conducted several Regional Traffic 
Operations Program Assessments to determine the sufficiency of staff within a region to perform 
basic signal operations activities for individual jurisdictions. In many cases, these reviews have 
shown that there are opportunities for improved operations through the use of regional 
approaches to problem solving, equipment procurement and testing, staff training, and 
performance measurement. 

Additional research in this area is needed to further identify specific needs by agency, as 
each jurisdiction has special circumstances that may either overstate or understate the need 
described in Table 8-2.  Overall, findings from the National Traffic Signal Report Card indicate 
that traffic signal operations could be improved with increased investment. 
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9.0 ADVANCED SIGNAL TIMING CONCEPTS 

This chapter covers some advanced concepts and applications within signal timing. The intent of this 
chapter is to introduce the concepts and to point the reader to references and information available to 
provide additional details. Each concept section provides an overview, discusses the effects on signal 
timing, and offers examples where applicable.  

9.1 TRAFFIC SIGNAL PREEMPTION 

9.1.1 Preemption Overview 

The 2003 Manual on Uniform Traffic Control Devices (MUTCD) defines traffic signal preemption as 
“the transfer of normal operation of a traffic control signal to a special control mode of operation” (1).  
Preemptive control is designed and operated to give the most important classes of vehicles the right of 
way at and through a signal.  This right of way is usually achived with a green indication on the approach 
of the vehicle requesting preemption.  Preemptive control may be given to trains, boats, emergency 
vehicles, and light rail transit. It is commonly used for fire engines because the size of their vehicles 
makes them less able to move through traffic without the aid of preemption. Signal preemption controls 
the movement of traffic that is of greater importance than general vehicle and pedestrian traffic. 
Preemptive control is necessary to avoid collisions (e.g., trains versus automobiles) and/or give right of 
way to vehicles in an emergency situation (e.g., fire engines responding to an emergency).  

Several types of technologies are available to detect vehicles requesting preemption , and include the 
use of light (strobe), sound (siren), pavement loops, radio transmission, and push buttons approaching an 
intersection, to request immediate service (green indication from the signal).  Figure 9-1 shows an 
example of an emergency vehicle preemption using optical detection. 

Figure 9-1 Emergency Vehicle Signal Preemption Example (2) 
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Preemption interrupts normal signal operations to transfer right of way to the direction of an 
approaching emergency vehicle, but a green indication is not always guaranteed immediately after 
preemption is requested.  The MUTCD states that the shortening or omission of any pedestrian walk 
interval and/or pedestrian change interval shall be permitted. This is often necessary with intersections 
adjacent to rail as it is often infeasible to provide clearance given the limitations of the locations of railroad 
track circuits and the speed of the approaching vehicles, and sometimes due to very long crosswalks 
versus close detection distances.  

For marine transport, the preemption would not be delayed as well for the servicing of pedestrians at 
such locations as drawbridge crossings.  The signal preemption typically occurs not at the drawbridge 
itself but at a signalized intersection immediately adjacent to the drawbridge.  At the intersection there 
may well be pedestrian signals.  Whether or not the ped intervals are shortened or omitted when the 
drawbridge preemption occurs is a matter of engineering judgment, but the MUTCD allows the ped 
intervals to be shortened or omitted for any type of preemption but not for “priority control”.The immediate 
servicing of pre-emption requests for these transportation modes is due to the need to maintain continued 
flow for rail and marine mobility. 

Preemption is different from signal priority, which alters the existing signal operations to shorten or 
extend phase time settings to allow a priority vehicle to pass through an intersection. Traffic signal priority 
is discussed in greater detail in Section 9.2 of this chapter.   

9.1.2 Effect on Signal Timing 

Preemptive control has a profound affect on signal timing because, in the controller, it totally replaces 
normal timing and logic with preemptive timing and logic to serve a specific vehicle type. The preemptive 
systems can extend the green time on an approach up to a preemptive maximum, that is irrespective of 
the maximum green or coordination settings. Preemptive service is followed by a recovery or transition 
period where the controller transitions to normal signal operations and coordination timing plans (if 
applicable).  

On a signal preemptive system in the Washington, DC, metropolitan area, once a signal was 
preempted, the coordinated systems took anywhere between 30 seconds to 7 minutes to recover to base 
time coordination(3). Signal phase sequencing and methodology for recovery or transition should be 
developed to minimize the impact preemption has on traffic operations and safety.    

Part 4 of the MUTCD calls out the standards for how to transition into and out of preemption. The key 
signal timing aspects of preemption are listed here. 

• Transition Into Preemption 

o The yellow and all-red vehicle clearance interval shall not be shortened or omitted. 

o Pedestrian walk or clearance intervals may be shortened or omitted. 

o A return to the previous steady green signal indication shall be permitted following a 
steady yellow signal indication in the same signal face, omitting the red clearance 
interval. 

• Transition out of Preemption 

o The yellow and all-red vehicle clearance interval of the preempted approach shall not 
be shortened or omitted. 

o A signal indication sequence from a steady yellow signal indication to a steady green 
signal indication shall not be permitted. 
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In addition, traffic signals that can receive multiple requests for signal preemption should prioritize the 
requests by importance of vehicle right of way and/or by difficulty in stopping the type or class of vehicle. 
The amount of time a signal has to transition into preemption is predicated on the distance upstream 
where the preempting vehicle can be detected.  

Some of the benefits associated with traffic signal preemption are: 

• Improved response time/travel times for emergency, rail, waterway, and other preempting 
vehicles. 

• Improved safety and reliability for vehicles receiving preemption right of way (e.g. emergency 
vehicles, trains, and boats). 

• Improved safety and clarity of right of way for other roadway users (i.e. avoids drivers having 
to yield right-of-way on their own without prompting from traffic control for an emergency 
vehicle or etc.). 

The nature of signal preemption varies greatly in its application, e.g. heavy rail crossings near a 
signalized intersection must be approached differently than providing preemption for emergency vehicles.  
Further references should be consulted beyond the general overview presented here to fully understand 
the various complexities associated with signal preemption. Two such resources are the National 
Cooperative Highway Research Program (NCHRP) Report 3-66, Traffic Signal State Transition Logic 
Using Enhanced Sensor Information, which describes preemption and advanced preemption due to 
heavy rail and light rail vehicles (4), and Traffic Signal Preemption for Emergency Vehicles, A Cross-
Cutting Study by the Federal Highway Administration (FHWA) and the National Highway Traffic Safety 
Administration (5). 

9.1.3 Example Applications 

Examples of preemptive control vary widely, but could include the following: 

• The prompt display of green signal indications at signalized locations ahead of fire vehicles 
and other official emergency vehicles (many cities have determined that law enforcement 
and ambulances are nimble enough to use their siren and can navigate efficiently without the 
aid of signal preemption, which reduces disruption to the signals and reserves the 
preemption for first repsonders from the fire department); 

• A special sequence of signal phases and timing to provide additional clearance time for 
vehicles to clear the tracks prior to the arrival of a train;  

• A special sequence of signal phases to display a red indication to prohibit movements 
turning toward the tracks during the approach or passage of a train or transit vehicle; and 

• The prompt display of green signal indications at a freeway ramp meters to progress a 
standing queue through the meter to avoid queue spillback into upstream traffic signals. 

Various challenges are identified in these applications originating from lessons learned.  These 
include the following: 

• Typically, a signal cycles a number of times before it returns to normal timing plan operations 
after a preemption call is carried out. This causes less-than-optimum timing splits, offsets, 
and corridor progression, which results in additional delays and queues, particularly during 
peak traffic volume periods.   

• Delays to roadway traffic can be exacerbated if preemption is used for a transit service on 
light rail lines especially during peak hours when frequent calls for preemption would be 
issued at rail crossings (6).  Furthermore, rail crossing gates that provide clearance for rail 
vehicles requesting preemption may be held down for too long, causing further delays to 
roadway traffic (6).  This can occur if sensor equipment, detecting the rail vehicle, is not 
placed in the correct locations or is not operating reliabily (6). 
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• Preemption can significantly shorten pedestrian walk and flash don’t walk intervals. Care 
should be given to allow as much time as possible to ensure safe pedestrian crossing or 
return to curb. 

• Preempt trap at signalized intersections near railroad crossings can occur if insufficient track 
clearance green time is allotted in association with an advanced preemption. The track 
clearance green time allows vehicles in a queue to be served on the near-side approach and 
to clear the railroad track area.  The potential problem occurs when the clearance green time 
is not long enough to clear the queue.  Under this scenario, a vehicle could be trapped on 
the tracks when the railroad crossing lights come on and the railroad gates come down.   

• Pre-emption calls for rail transit systems can delay emergency vehicles, thus creating a 
significant “public safety concern” (6).  Also, if “preempt confirmatory lights” do not provide 
clear indications on whether an approaching vehicle has control of the signal, emergency 
vehicles may wrongly assume they have received preemption.  This can create a potential 
hazard if the preemption call was issued to the rail system that is in conflict with the 
emergency vehicle’s approach.   

• If there are multiple vendors supporting a preemption system, then interoperability will likely 
be required among the various proprietary technologies (e.g., between the signal controller 
hardware of vendor A and the traffic control software of vendor B).  Such integration can be 
especially difficult to achieve if the vendors are market competitors (6). 

• Implementing a successful signal preemption for rail is likely to require a multifaceted, 
coordinated systems level approach: 

o Requires coordination among multiple stakeholders such as transit authorities, 
emergency responders, roadway agencies to minimize any adverse impacts from 
preemption system on each stakeholder’s operations.  

o The preemption system at a particular intersection must not only take into account 
standard roadway traffic characteristics, but also various attributes of the transit 
system that it’s servicing such as headways and frequency of service.  Overall, 
potential impacts to all relevant modes should be accounted for when designing and 
implementing a preemption system.  It may require further analysis to 
comprehensively assess the impacts of signal preemption and to better understand 
the interaction between “rail and traffic signalizing systems” (6) 

9.2 TRAFFIC SIGNAL PRIORITY 

9.1.4 Traffic Signal Priority Overview 

Transit Signal Priority (TSP) is an operational strategy that is applied to reduce the delay transit 
vehicles experience at traffic signals. TSP involves communication between buses and traffic signals so 
that a signal can alter its timing to give priority to transit operations. Priority may be accomplished through 
a number of methods, such as extending greens on identified phases, altering phase sequences, and 
including special phases without interrupting the coordination of green lights between adjacent 
intersections.  Ultimately, TSP has the potential to improve transit reliability, efficiency, and mobility.   

With TSP, there are two basic methods to adjust the signal timing at an intersection for an 
approaching bus: reducing the red time (red truncation) or extending the green time (green extension).  
Figure 9-2 illustrates these methods. 
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Figure 9-2 Effect of TSP to Adjust Signal Timing 
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Differences from signal preemption 

TSP is different from signal preemption, which interrupts the normal signal cycle to accommodate 
special events (e.g., a train approaching a railroad grade crossing adjacent to a signal or an emergency 
vehicle responding to a call).  For example, a fire engine may send a preemption request that instantly 
alters the traffic signal timing and or phasing to provide a green indication. In this case, the normal signal 
operations process would be disrupted. More specifically, with pre-emption certain phases may be 
skipped or replaced for approaches to the intersection that are not receiving the signal pre-emption 
treatment (7). Note: preemption is discussed in Section 9.1.  

With TSP, however, the transit detection system communicates a priority request to the traffic signal 
that may or may not be granted.  If such a request is granted, the traffic signal timing is altered to serve 
the priority request without disrupting coordination. In this situation, the normal signal operations process 
and overall signal cycle are maintained (6).  With TSP, side-street phases would not be skipped, although 
the timing of these phases is likely to be altered.    

To achieve greater uniformity in the deployment and implementation of ITS and applications such as 
TSP, a “family” of communication standards was developed known as The National Transportation 
Communications for ITS Protocol (NTCIP) (6).  NTCIP 1211 was established by the Signal Control and 
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Prioritization (SCP) working group, and it provides a set of communication standards for exchanging 
information among SCP systems such as TSP.   

NTCIP 1211 represents the physical elements needed to provide signal priority, typically four 
components associated with the bus detection system and the traffic signal controller. The detection 
system lets the TSP system know where the vehicle requesting priority is located. The detection system 
communicates that message with the priority request generator (PRG) and the priority request server 
(PRS) manages those requests. The fourth and final component of the system may be the transit AVL or 
traffic management center which monitors the system and logs data.  

9.1.5 Effect on Signal Timing 

Transit signal priority has a limited affect on signal timing because it adjusts to normal timing and 
logic to serve a specific vehicle type. The priority algorithm modifies the green allocation and may work 
within the constraints of coordination settings or maximum green. The NTCIP 1211 standard requires that 
priority allow the coordination logic to be maintained without a recovery or transition period after the 
priority request.  

The most commonly reported benefits of using signal priority include reduced signal delay for transit 
vehicles and improved transit travel time. In some cases, improved reliability has been provided through 
the integration of a transit system’s Automatic Vehicle Location (AVL) system to request priority only 
when the vehicle is behind schedule.  

9.1.6 Examples of Transit Signal Priority  

TSP has been employed in various urban transit networks throughout the United States. King County, 
Washington, which includes the Seattle metropolitan area, is one region where TSP is actively operating. 
Portland, Oregon, is another. While both of these systems ultimately alter the timing of traffic signals to 
provide some benefit to transit vehicles, they differ in the way signal priority requests are generated.  

King County, WA  
With the TSP system for King County Metro, the transit vehicle is not responsible for generating a 

NTCIP 1211 standard priority request for signal priority. Instead, the vehicle only communicates its 
presence to the traffic signal system, which in turn has the ability to generate a signal priority request for 
the approaching bus.   

As the vehicle approaches an intersection, an Automated Vehicle Identification (AVI) system within 
the bus transmits information, such as a vehicle’s ID number, to a roadside reader. The reader detects 
the presence of a transit vehicle approaching the intersection and sends a message to a transit interface 
unit located in the individual signal controller cabinet.  

TSP has resulted in transit performance improvements in King County. For example, the combination 
of TSP and signal optimization is responsible for a 40% reduction in transit signal delay along two transit 
corridors.  Another one of the observed benefits from TSP in King County was a 35–40% reduction in 
travel time variability (7).    

Portland, OR  
In contrast with the TSP system in King County, transit vehicles in Portland, Oregon have the ability 

to decide whether or not to request priority through the AVL integration described above. .  The vehicle is 
equipped with detection equipment (optical-based) similar to that used to provide an emergency vehicle 
with a preemption request. Unlike preemption, however, the transit vehicle using ITS only transmits input 
to the signal control system when it needs priority, such as when it is behind schedule. This process 
generally results in “first in, first out” operation, where the first vehicle to transmit a need for priority is 
served first, regardless of relative need.  

Like King County, transit vehicles in Portland have experienced some measurable benefits with the 
TSP implementation. Some of those benefits are a 10% improvement in travel time and a 19% reduction 
in travel time variability.  With the increased reliability, less schedule recovery time was needed to keep 

9-6 



the buses on schedule.  Moreover, the benefits of TSP enabled the Portland transit agency, TRIMET, to 
avoid having to purchase an additional bus (7).   

9.3 TRAFFIC RESPONSIVE OPERATION 

9.1.7 Traffic Responsive Overview 

It is common for a coordinated traffic signal to operate different timing plans at different times of the 
day and days of the week.  This is done by utlizing a predetermined timing plan that best suits the current 
traffic conditions.  For example, at different times, a signal may operate an a.m. Peak, a p.m. Peak, or an 
Off Peak plan.  It may also operate in free (uncoordinated) mode at other various times, such as 
overnight.  The most common means of determining when to change timing plans is to use a time-of-day 
and day-of-week schedule.  This is referred to as time-of-day (TOD) plan selection and is described in 
more detail in Chapter 7.  The time-of-day plan selection schedule can be implemented in either the 
controller, field master, or a central computer system.  However, during incidents or other unusual 
conditions, plans may also be changed manually through the same means.  In any case, signal 
coordination usually requires that the timing plan be changed simultaneously at all signals within a 
coordinated group.  Therefore, if time-of-day plan selection is done locally at the controller, all controllers 
within a coordinated group need to be configured with the same time-of-day schedule. 

Time-of-day plan selection works well when traffic conditions are consistent and predictable – that is, 
similar traffic patterns generally occur during the same times each day.   When an incident, a planned 
event (e.g., construction, county fair, football game, etc.), extreme weather, or any other unusual 
occurrence causes a significant change in the normal traffic conditions, the timing plan selected by the 
time-of-day method may not be the plan best suited to current conditions.  To address this situation, the 
traffic responsive plan selection method uses data from traffic detectors, rather than time of day, to 
automatically select the timing plan best suited to current conditions.   

Plan selection for responsive operations may also be invoked manually. There are several instances 
where agencies operating traffic signals from their traffic management centers will use predetermined 
plans for planned special events or recurring congestion on an as needed basis. 

To implement traffic responsive operations, it may be necessary to update 
TOD/coordination plans.  Along with fine tuned plans, it is critical to confirm that 
the local controller clocks are in sync to maintain the coordination plans. 

9.1.8 Techniques - Operational 

Traffic responsive plan selection (TRPS) normally takes place in a field master or a central computer 
system.  When the master or computer selects a new timing plan, it sends a command to all signals in a 
coordinated group to instruct them to change to the new plan simultaneously, thus ensuring coordination 
is maintained. 

The master or central computer monitors volume and/or occupancy data from multiple vehicle 
detectors.  The data from the detectors are weighted, merged, and otherwise processed to calculate 
values for a few key parameters that are compared to thresholds.  When a threshold is crossed, one of 
the predetermined plans  is implemented for the conditions represented by the threshold categories 
selected.  Different signal system suppliers use different parameters and algorithms for traffic responsive 
plan selection.  A user needs to refer to documentation specific to their signal system and must prepare 
these in advance.  Most algorithms involve separate calculations and threshold comparisons for each 
cycle length (total volume of traffic), offset (direction of traffic with largest volume), and split (relative 
occupancy and/or volume on different streets).   

Regardless of the algorithm used, traffic responsive plan selection requires the user to enter 
potentially complex configuration parameters.  When setting up TRPS, considerable effort may be 
needed to identify the vehicle detectors that will provide an adequate representation of traffic conditions, 
to establish appropriate parameter values associated with those detectors, to establish appropriate 
thresholds and associated plans, and to fine tune the configuration based on its performance once TRPS 
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is implemented.  Historical traffic count (and preferably occupancy) data should be available for candidate 
detectors before the detector selection and setup process begins.  It is often necessary to repeatedly 
adjust parameters, especially thresholds, based on observation of calculated values relative to actual 
traffic conditions until effective settings are established.8   

The detectors used in TRPS generally need to be located away from the stop line.  (Advance 
detectors or departure-side detectors are commonly used.)  The detectors need to be configured so that 
the controller can generate reasonably accurate count and occupancy data separately for each direction 
of travel even if served by the same signal phase, and preferably for each lane.  Such detectors are often 
referred to as system detectors.  Detectors used in TRPS must be actively monitored, reliable and faults 
must be repaired quickly.  

If the volume of traffic trying to make a movement at an intersection exceeds the capacity of the traffic 
signal’s phase serving that movement, traffic queues can grow over multiple cycles.  In this case, 
measuring the volume of traffic served by the phase will not detect the overload condition.  Occupancy 
(temporal density, or the portion of time that a detector is occupied, in the range 0.00 to 1.00) on an 
advance detector within the queuing area can be used to detect the onset of additional queuing, even 
though the served volume doesn’t change.  Occupancy can therefore be used to select a plan with a 
cycle length and split that will accommodate the excess traffic demand.  On the other hand occupancy 
alone is relatively insensitive to traffic volume changes under free flow conditions, when queues don’t 
extend onto detectors. 

Algorithms usually allow the use of a combination of volume and occupancy in plan selection.  One 
technique is to combine these into a single dimensionless value by summing the volume (count) and a 
multiple of the occupancy.  This process is often referred to by the expression Volume (V) + Factor (k) x 
Occupancy (O), or V+kO.  Increasing the value of the factor k increases the sensitivity to occupancy 
changes, relative to volume.   

The algorithms commonly used in TRPS include hysteresis to prevent oscillations across a threshold.  
Even so, it is common for timing plans to change too frequently, resulting in inefficiencies due to offset 
transitions.  On the other hand, the time period over which selection values are calculated can result in a 
coordinated system being too slow to change plans at the onset of a rapid change in traffic volumes such 
as may result from a major incident.  Nonetheless, when well configured and fine tuned, TRPS can result 
in improved traffic signal operation compared to time-of-day plan selection, especially for coordinated 
signal groups subject to significant unpredictable changes in traffic flows.  A related problem is that the 
plan change may occur during peak traffic conditions when an offset transition has a greater negative 
impact.   

Despite the problems sometimes encountered, a well configured and fine tuned traffic responsive 
plan selection process can result in improved traffic signal operation compared to time-of-day plan 
selection for coordinated signal groups subject to significant unpredictable changes in traffic flows.  Such 
conditions are often found, for example, adjacent to a major event venue and on a route that serves as a 
by-pass for a blocked freeway segment. 

If the actual traffic conditions are quite different from that for which any of the available plans was 
designed, as often happens during both planned and unplanned events, it may be necessary to develop 
special timing plans for unusual conditions.  For example, a special plan may be designed to serve extra 
heavy traffic (in one direction) leaving a sporting event or bypassing a freeway blockage.  Traffic 
responsive plan selection can automatically implement such a plan when those conditions occur.    

TRPS merely selects a timing plan to operate, but does not make changes to the timings specified in 
the timing plan.  That is the role of adaptive traffic signal control, described in Section 9.5.   

9.4 ADAPTIVE TRAFFIC SIGNAL CONTROL 

9.1.9 Adaptive Traffic Signal Control Overview 

Adaptive traffic signal control is a concept where vehicular traffic in a network is detected at an 
upstream and/or downstream point and an algorithm is used to predict when and where the traffic will be 
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and to make signal adjustments at the downstream intersections based on those predictions.  The signal 
controller utilizes these algorithms to compute optimal signal timings based on detected traffic volume 
and simultaneously implement the timings in real-time.  This real-time optimization allows a signal 
network to react to volume variations, which results in reduced vehicle delay, shorter queues, and 
decreased travel times 

All adaptive systems are critically linked to good detection systems.  While some 
adaptive systems will have better tolerance of detector faults than others, the 
reliability and accuracy of the decisions made by the adaptive algorithms cannot 
be achieved without well-maintained detection.  While it is important to consider 
maintenance of detector systems for all types of traffic signal control, maintenance 
of detection for adaptive systems is particularly important. 

Adaptive signal control autonomously adjusts signal timing parameters in real-time, to respond to 
actual, real-time traffic conditions.  By adjusting the traffic control parameters to more closely align with 
traffic conditions, adaptive systems can reduce traffic delay, increase average speeds, improve travel 
times, and decrease travel time variability.  Many studies have shown that adaptive signal control 
improves average performance metrics by 10%, with some systems improving particularly poor conditions 
by 50% or more.  In some cases, comparisons suggest that adaptive systems do not improve traffic 
conditions significantly.  These studies have typically compared adaptive control with “well-tuned” 
actuated and pre-timed systems.  Thus, good and sound signal timing practices, such as those promoted 
in this manual, can go a long way to improve traffic conditions.  However, adaptive systems can still have 
a profound impact even starting from well-designed baseline signal timings where: 

• Traffic conditions fluctuate randomly on a day-to-day basis 

• Traffic conditions change rapidly due to new or changing developments in land use 

• Incidents, crashes, or other events result in unexpected changes to traffic demand 

• Other disruptive events, such as preemption, require a response 

The underlying reason for adaptive system performance is quite simple; when system conditions are 
stable, there is little need to modify the control parameters if they are set appropriately.  In the situation 
where fixed parameters have not been chosen by thorough analysis, adaptive systems can find better 
traffic control parameters.  When system conditions change, system performance can only be improved 
by modifying the control parameters.  As shown in Figure 9-3, a typical signal timing time-of-day plan 
schedule can be adequate for a majority of daily volume fluctuations, but may not be optimal under 
variable flow.   
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Figure 9-3 Sample Time of Day Volume Profile Compared to Time of Day Timing Schedule 
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In addition, where congestion is high, adaptive systems typically provide benefits above fixed-time 

and fixed-parameter systems by: 

• Delaying the onset of oversaturation 

• Recovering more quickly from saturation after traffic demand has dissipated 

On the other hand, there are cases where fixed-time and fixed-parameter systems may outperform 
adaptive control approaches when traffic volumes are very low.  In this case, sound traffic engineering 
practice is adequate for effective traffic management. 

9.1.10 Adaptive Control Concepts 

Many adaptive systems have been developed over the last 30 years.  New systems continue to 
evolve and new techniques have emerged as technology and traffic control system architectures have 
taken shape.  In the United States, there are several adaptive systems available from a variety of 
vendors. 

All adaptive control systems are driven by a similar conceptual process: 

1. Collect data in real-time from sensor systems to identify traffic conditions 

2. Evaluate alternative signal timing strategies on a model of traffic behavior 

3. Implement the “best” strategy according to some performance metric 

4. Repeat steps 1,2,3 again and again 

Each adaptive system is distinguished by how it uses different components or approaches to these 
four key steps in the control of the traffic system.   

All adaptive systems need accurate and comprehensive traffic detection systems, but some need a 
particular size or length or placement of detectors, while others are more flexible.  Most adaptive systems 
require more detection than would be deployed for semi-actuated traffic control and traffic responsive 
plan selection methods.   
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Most adaptive traffic systems use some form of a traffic model to evaluate alternative traffic control 
strategies. This model may be based on virtually moving individual vehicles down the street and 
predicting their movements, estimating platoons of vehicles, measuring statistics of occupancy or 
volumes over time, and other approaches.  All adaptive systems must have some way of internally 
evaluating the question: “Is traffic control scheme A better or worse than control scheme B? (and C and D 
and E …)”.  To some extent, all adaptive systems: 

• Represent the current state of the traffic system 

• Predict how the conditions of the traffic system will change if the control strategy changes (as 
well as what will happen if it doesn’t) through various algorithms 

Based on the complexity of the traffic model, the adaptive control system ranges from thousands of 
parameters (based on the number of intersections of the deployment) to very few.  In most cases, 
parameters require calibration and adjustment.  This can be a time-consuming and expert-driven process 
during deployment.  The better tuned the traffic model becomes (i.e. the more it is matched to what is 
happening in the real-world), the better the system will perform.  Some systems can automatically adjust 
their internal model parameters and others require human judgment and interaction.  In any event, the 
traffic model and the prediction methodology (and how accurate its predictions are with respect to what 
really happened) used by the adaptive system determine how effectively it operates. 

Finally, all adaptive systems evaluate alternative traffic control strategies and pick the best alternative 
according to a performance metric.  There are three components to this element of adaptive control: 

• The process for searching through as many possible alternatives as quickly as possible 

• Evaluating each alternative using a performance metric 

• Trading off improvements at individual intersections with system-wide performance 
considerations 

The search methodology itself is not typically important for signal timing, but how the traffic engineer 
is able to constrain or influence the search of alternative timing strategies is critical to the success of 
adaptive system deployment.  For example: 

• The minimum and maximum phase lengths 

• Which phase sequences are allowed or disallowed 

• How rapidly or slowly the system allows timing parameter changes 

Other parameters, specific to individual adaptive systems, are key elements to guide the adaptive system 
in searching appropriate and effective signal timing strategies.  Training and staffing are important to keep 
the system operating at its best. 

Similar to the process to identify constraints for signal timing optimization, the influence of the traffic 
engineer in determining the performance metric is also critical to the success of the adaptive system.  
Typical performance metrics may be to minimize total intersection delay, or some weighted combination 
of intersection delay and stops.  Other systems look at different metrics such as progression efficiency, or 
maximizing a green-band along an arterial.  Whatever the metric is in the adaptive system, the traffic 
engineer must ensure that the metric matches what he or she envisions as the proper optimization 
objective for the traffic where the adaptive system is deployed. 

9.1.11 Examples of Adaptive Traffic Control Systems 

In the United States, many adaptive control systems have been deployed, but adaptive systems still 
control less than 1% of all the traffic signals in the nation. As detection and communications technology 
improves, adaptive systems are certainly becoming more popular and effective.  This section provides a 
brief description of some systems that have been deployed in the U.S. over the last 20 years. 
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Split Cycle Offset Optimisation Technique (SCOOT) 
Developed in the United Kingdom, SCOOT is the most widel deployed adaptive system in existence.  

SCOOT uses both stop-line and advance detectors, typically 150-1,000 feet (50-300 meters) upstream of 
the stop line (or exit loops (loop detectors located downstream of the intersection), measuring vehicles 
leaving the upstream detector). The advance detectors provide a count of the vehicles approaching at 
each junction. This gives the system a high-resolution picture of traffic flows and a count of the number of 
vehicles in each queue, several seconds before they touch the stop line (allowing time for communication 
between the traffic signal controller and the central SCOOT computer). SCOOT also provides queue 
length detection and estimation.  Under the SCOOT system, green waves can be dynamically delayed on 
a "just in time" basis based on the arrival of vehicles at the upstream detector, which allows extra time to 
be allocated to the previous green phase, where warranted by heavy traffic conditions.  SCOOT controls 
the exact green time of every phase on a traffic controller by sending “hold” and “force-off” commands to 
the controller. 

The SCOOT model utilizes three optimizers: splits, offsets, and cycle.  At every junction and for every 
phase, the split optimizer will make a decision as to whether to make the change earlier, later, or as due, 
prior to the phase change. The split optimizer implements the decision, which affects the phase change 
time by only a few seconds to minimize the degree of saturation for the approaches to the intersection.   

During a predetermined phase in each cycle, and for every junction in the system, the offset optimizer 
makes a decision to alter, all the offsets by a fixed amount.  The offset optimizer uses information stored 
in cyclic flow profiles and compares the sum of the performance measures on all the adjacent links for the 
scheduled offset and the possible changed offsets.   

A SCOOT system is split into cycle time “regions” that have pre-determined minimum and maximum 
cycle times. The cycle optimizer can vary the cycle time of each REGION in small intervals in an attempt 
to ensure that the most heavily loaded NODE in the system is operating at 90% saturation. If all stop bars 
are operating at less than 90% saturation, then the cycle optimizer will make incremental reductions in 
cycle time.  

Sydney Co-ordinated Adaptive Traffic System (SCATS) 
Developed in Australia, SCATS uses a split plan selection technique to match traffic patterns to a 

library of signal timing plans and scales those split plans over a range of cycle times.  SCATS gathers 
data on traffic flows in real-time at each intersection. This data is fed to a central computer via the traffic 
control signal. The computer makes incremental adjustments to signal timing based on second by second 
changes in traffic flow at each intersection. SCATS performs a vehicle count at each stop line and 
measures the gap between vehicles as they pass through each junction. As the gap between vehicles 
increases, green time efficiency for the approach decreases, and SCATS seeks to reallocate green time 
to the greatest demand.  SCATS selects a timing plan on the controller, and thus the local actuated 
controller uses its own inherent gap-out and force-off logic to control the intersection second-by-second. 

Real Time Hierarchical Optimized Distributed Effective System (RHODES) 
RHODES uses a peer-to-peer communications approach to communicate traffic volumes from one 

intersection to another in real-time.  By passing the data back and forth over a high-speed communication 
network, RHODES is able to predict the impacts of traffic arriving 45-60 seconds upstream and plan for 
traffic phase sequence and phase durations accordingly.  RHODES continually re-solves its planned 
phase timings, every 5 seconds, to adapt to the most recent information.  RHODES requires upstream 
and stop-bar detectors for each approach to the intersections in the network and has a wide variety of 
parameters that are used to calibrate the traffic model to real-world conditions.  RHODES over-rides the 
local controller by sending “hold” and “force-off” commands to the controller to set the exact duration of 
each phase. 

Optimized Policies for Adaptive Control (OPAC) “Virtual Fixed Cycle” 
The OPAC adaptive control system uses a predictive optimization with a rolling horizon. This 

congestion control strategy, which attempts to maximize throughput, adjusts splits, offsets, and cycle 
length, but maintains the specified phase order. For un-congested networks, OPAC uses a local level of 
control (at the intersection) to determine the phase durations, and a network level of control for 
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synchronization which is provided either by fixed-time plans (obtained offline), or by a virtual cycle 
(determined online). The levels of local and global influence are flexible and can be adjusted by the traffic 
engineer. The state of the system is predicated using detectors located approximately 10-15 seconds 
upstream on the approaches to the intersection.  OPAC sends “hold” and “force off” commands to the 
local controller to set the exact duration of every phase on the signal. 

Adaptive Control Software Lite (ACS-Lite) 
ACS-Lite was developed to reduce the costs to deploy adaptive control systems, by consolidating the 

adaptive processing into a master control unit that supervises local field controllers.  ACS-Lite downloads 
new split, offset, and cycle parameters to the local controllers every 5-15 minutes in response to changing 
traffic conditions.  ACS-Lite is based on a very simple traffic model that has very few tunable parameters 
and requires modest calibration.  Of all actuated systems, ACS-Lite may be the slowest to respond to 
rapid changes in traffic flows.  ACS-Lite sends cycle, offset, and split values to the local controller.  The 
gap-out and force-off logic of the controller works normally with the updated parameters. 

9.5 PLANNED SPECIAL EVENTS, INCIDENT, & EMERGENCY MANAGEMENT 

9.1.12 Overview 

Signal timing can play a role in managing and even mitigating certain types of non-recurring 
congestion.  In particular, high volumes of traffic generated by planned special events, reduced corridor 
capacity from roadway incidents, or increased travel demand triggered by region-wide evacuations can 
necessitate signal timing changes. A primary goal of readjusting signal timing in these circumstances 
would be to give priority to specified movements and to minimize the overall delay experienced by users 
from the non-recurring congestion.  One way to achieve this objective would be to sustain and/or increase 
the throughput of traffic at certain intersections by increasing the green time for those movements.  Traffic 
signals with modified timing settings perform this function by essentially “flushing” the preferred 
movement.   

While increasing the roadway throughput, signal timing can also help to sustain or increase corridor 
capacity during an event.  For example, during an evacuation from a hurricane, longer green times at 
signal lights for the preferred movement could enable an arterial to serve greater traffic volumes per hour.   

Signal timing is modified during these events to meet other objectives besides those related to traffic 
operations and arterial performance, such as enhancing public safety.  Traffic lights, for example, 
operating with these modified settings could reduce delays for emergency responders traveling to an 
incident on the roadway (9).   

Another goal of changing signal timing would be to guide motorists to a certain destination, which 
could be the venue for a planned special event or the destination for evacuated traffic.  More specifically, 
with certain roadways providing greater capacity or increasing traffic flow from the modified signal timing 
settings, motorists are “attracted” to these less-delayed corridors.  In turn, these corridors become a pre-
designated route for the traffic of a special event or roadway incident.   

9.1.13 Techniques – Operational  

The techniques to modify signal timing during special events, roadway incidents, or evacuations 
involve processes in traffic operations and planning, and some management and coordination at the 
policy and institutional levels.  On the operations/planning side, an initial step would be to determine the 
specific route and intersections where traffic signals would be retimed. This route could be a particular 
arterial that is parallel to a certain freeway.  In the event of an incident on the freeway, traffic could be 
diverted from the freeway to this arterial, which could provide additional capacity for a preferred 
movement with the modified timing settings in place at its various traffic signals.    

Before signal timing is changed in response to certain non-recurring traffic, field observations or 
collected data would need to be collected before and during the event to determine whether such 
adjustments are warranted.  This data may include traffic volumes/speeds and other traffic flow 
characteristics to detect the occurrence of a roadway incident or the presence of special event traffic. In 
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one example, video cameras placed along certain arterials could help to verify whether an accident is 
causing non-recurring congestion.  In another example, sensors placed at the ingress/egress points of 
various parking garages could determine when motorists are leaving a special event (such as a 
basketball game).  These devices could indicate when to activate special signal timing plans.  

Once the non-recurring traffic is detected, a particular change to the signal timing settings may be to 
increase green time for preferred or diverted movements.  Meanwhile, the signal timing for the other 
movements remains the same.  This results in an increased cycle length.   

After making such adjustments, “real-time” monitoring would be required to ensure a more rapid 
implementation of appropriate timing plans and to permit operator manual control as needed (9). 

9.1.14 Policy/Institutional Strategies 

These operational procedures may not be effective or possible without a sufficient level of 
coordination among the jurisdictions impacted by the traffic from special events or emergency situations. 
This inter-jurisdictional coordination is needed among such institutions as law enforcement, public safety 
organizations, and various transportation/transit agencies to share resources, seamlessly exchange the 
required information, and to implement the required traffic control/signal timing plans (10).  Overall, 
adjusting signal timing can reduce delays for motorists during special events, roadway incidents, or 
evacuations.   

9.1.15 Example Implementations 

Coordinated Highways Action Response Team (CHART) – State of Maryland 
CHART is a cooperative group between the Maryland Department of Transportation, Maryland 

Transportation Authority, and Maryland State Police with several other federal and local agencies.  This 
group started in the mid-1980s and focused on improving travel to and from the eastern shore, but has 
developed into a multi-jursidictional and multi-discplinary program ranging from Baltimore to the greater 
Washington D.C. area.   

As part of the CHART system, many of the area highways are monitored via system detectors, video 
cameras, a cellular phone system, and weather sensors.  Once an incident is detected, information is 
provided to the stakeholders and users.  The stakeholders determine what is needed to mitigate the 
incident, perhaps a tow truck or lane closure.  The user is informed of alternate routes or notified to 
expect delays.  It is estimated that the program results in a total delay time reduction of almost 30 million 
vehicle-hours, and a total fuel consumption reduction of approximately 5 million gallons (11)  

The incident detection is integrated with the signal system software and allows pre-set signal timing 
plans to be implemented when needed.  The system is developed so that when a change occurs in the 
traffic conditions on the highway, a message is given to various stakeholders.  Then the stakeholders will 
decide if a diversion and a change of signal timing is needed for adjacent arterials. 

City of Portland 
The City of Portland, in conjuction with the Oregon Department of Transportation and Multnomah 

County, has developed various incident management plans along Interstates 5 and 205.  A key to the 
plan is detection of incidents on the highway system.  Upon detection—either by video, system loop 
detectors, or visual—dynamic message boards are programmed to inform motorists of the incident and 
possible diversion.  If there is a diversion, the signal timing along adjacents arterial is modified to 
accommodate the influx of volume.   

9.6 WEATHER-RELATED FACTORS THAT INFLUENCE SIGNAL TIMING 

9.1.16 Weather-Related Factors Overview 

Traffic signals are exposed to a range of weather conditions that may influence how users move 
through the intersection.  Depending on the region, these conditions can include heavy rain, 
thunderstorms, slush, ice, and even snow.  Fog is another weather-related factor that can reduce visibility 
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and make it more difficult for drivers to see an approaching intersection.  There are also cases of extreme 
weather disturbances such as hurricanes, tornadoes, and blizzards that may necessitate changes in 
signal timing at the effected intersections.   

9.1.17 Techniques – Operational 

Any of these above conditions or extreme incidents could warrant a change in signal timing settings.  
For example, fog could reduce visibility to the point of lowering intersection approach speeds.  Inclement 
weather can also lead to increasing headways between vehicles and reductions in saturation flow rates 
through an intersection (12).  In particular, roadways can become significantly congested with traffic 
evacuating areas impacted by such extreme weather conditions as hurricanes.  At the same time, during 
snowy conditions roadways may be less congested, but there is likely to be an increase in start-up lost 
time and a reduction in tire pavement friction at an intersection.   

Due to these effects on roadways and traffic patterns, modifying signal timing plans could mitigate or 
prevent increased delays at intersections.  In particular, changing signal timing settings during inclement 
weather may improve the use of the traffic signal display.  For example, with the increasing headways 
between vehicles in bad weather, phase times can be readjusted to maintain signal coordination for the 
traffic stream.  

Another benefit can occur along roadways congested with traffic leaving a bad weather region.  For 
example, in Clearwater, Florida, system operators have increased green times along roadways for traffic 
leaving the nearby beaches in the event of thunderstorms.  One study has determined that this signal 
timing modification resulted in reduced delay at intersections and thus increased “roadway mobility” along 
major artierials (15).   

In spite of these performance improvements, it is still uncertain whether modifying existing signal 
timing plans would be necessary for maintaining or improving the level of service at an intersection.  
Fewer vehicles on the roadway during inclement weather result in lower delays and thus the overall 
performance of the signalized intersection would not significantly decrease even with revised signal timing 
settings.  Results in a few studies show that corridor operations would not be “radically affected” by bad 
weather, thereby making a modified signal timing plan less necessary (13). 

The retiming of traffic signals in bad weather could be beneficial from a safety perspective.  In 
particular, increasing the “amber-all-red interval” could improve drivers’ ability to either pass through or 
stop at the intersection safely.  At the same time, changing signal timing plans during bad weather could 
help to reduce traffic speeds that are unsafe for the weather conditions.  In Charlotte, NC, traffic signals at 
intersections were modified during inclement weather to operate with increased cycle lengths or with peak 
period timing plans.  The result of these actions led to a reduction in travel speeds, and thus have 
“[minimized] the probability and severity of crashes” according to one study (16).   
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